Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmcom GIF version

Theorem nnmcom 6068
 Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴))

Proof of Theorem nnmcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5519 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐵))
2 oveq2 5520 . . . . 5 (𝑥 = 𝐴 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝐴))
31, 2eqeq12d 2054 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴)))
43imbi2d 219 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴))))
5 oveq1 5519 . . . . 5 (𝑥 = ∅ → (𝑥 ·𝑜 𝐵) = (∅ ·𝑜 𝐵))
6 oveq2 5520 . . . . 5 (𝑥 = ∅ → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 ∅))
75, 6eqeq12d 2054 . . . 4 (𝑥 = ∅ → ((𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥) ↔ (∅ ·𝑜 𝐵) = (𝐵 ·𝑜 ∅)))
8 oveq1 5519 . . . . 5 (𝑥 = 𝑦 → (𝑥 ·𝑜 𝐵) = (𝑦 ·𝑜 𝐵))
9 oveq2 5520 . . . . 5 (𝑥 = 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝑦))
108, 9eqeq12d 2054 . . . 4 (𝑥 = 𝑦 → ((𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥) ↔ (𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑦)))
11 oveq1 5519 . . . . 5 (𝑥 = suc 𝑦 → (𝑥 ·𝑜 𝐵) = (suc 𝑦 ·𝑜 𝐵))
12 oveq2 5520 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 suc 𝑦))
1311, 12eqeq12d 2054 . . . 4 (𝑥 = suc 𝑦 → ((𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥) ↔ (suc 𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 suc 𝑦)))
14 nnm0r 6058 . . . . 5 (𝐵 ∈ ω → (∅ ·𝑜 𝐵) = ∅)
15 nnm0 6054 . . . . 5 (𝐵 ∈ ω → (𝐵 ·𝑜 ∅) = ∅)
1614, 15eqtr4d 2075 . . . 4 (𝐵 ∈ ω → (∅ ·𝑜 𝐵) = (𝐵 ·𝑜 ∅))
17 oveq1 5519 . . . . . 6 ((𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑦) → ((𝑦 ·𝑜 𝐵) +𝑜 𝐵) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
18 nnmsucr 6067 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝑦 ·𝑜 𝐵) = ((𝑦 ·𝑜 𝐵) +𝑜 𝐵))
19 nnmsuc 6056 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
2019ancoms 255 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
2118, 20eqeq12d 2054 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((suc 𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 suc 𝑦) ↔ ((𝑦 ·𝑜 𝐵) +𝑜 𝐵) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)))
2217, 21syl5ibr 145 . . . . 5 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑦) → (suc 𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 suc 𝑦)))
2322ex 108 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑦) → (suc 𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 suc 𝑦))))
247, 10, 13, 16, 23finds2 4324 . . 3 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥)))
254, 24vtoclga 2619 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴)))
2625imp 115 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   = wceq 1243   ∈ wcel 1393  ∅c0 3224  suc csuc 4102  ωcom 4313  (class class class)co 5512   +𝑜 coa 5998   ·𝑜 comu 5999 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006 This theorem is referenced by:  nndir  6069  nn2m  6099  mulcompig  6429  enq0sym  6530  enq0ref  6531  enq0tr  6532  addcmpblnq0  6541  mulcmpblnq0  6542  mulcanenq0ec  6543  nnanq0  6556  distrnq0  6557  mulcomnq0  6558  addassnq0  6560  nq02m  6563
 Copyright terms: Public domain W3C validator