ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-omul Structured version   GIF version

Definition df-omul 5909
Description: Define the ordinal multiplication operation. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
df-omul ·𝑜 = (x On, y On ↦ (rec((z V ↦ (z +𝑜 x)), ∅)‘y))
Distinct variable group:   x,y,z

Detailed syntax breakdown of Definition df-omul
StepHypRef Expression
1 comu 5902 . 2 class ·𝑜
2 vx . . 3 setvar x
3 vy . . 3 setvar y
4 con0 4038 . . 3 class On
53cv 1222 . . . 4 class y
6 vz . . . . . 6 setvar z
7 cvv 2526 . . . . . 6 class V
86cv 1222 . . . . . . 7 class z
92cv 1222 . . . . . . 7 class x
10 coa 5901 . . . . . . 7 class +𝑜
118, 9, 10co 5424 . . . . . 6 class (z +𝑜 x)
126, 7, 11cmpt 3781 . . . . 5 class (z V ↦ (z +𝑜 x))
13 c0 3192 . . . . 5 class
1412, 13crdg 5865 . . . 4 class rec((z V ↦ (z +𝑜 x)), ∅)
155, 14cfv 4817 . . 3 class (rec((z V ↦ (z +𝑜 x)), ∅)‘y)
162, 3, 4, 4, 15cmpt2 5426 . 2 class (x On, y On ↦ (rec((z V ↦ (z +𝑜 x)), ∅)‘y))
171, 16wceq 1223 1 wff ·𝑜 = (x On, y On ↦ (rec((z V ↦ (z +𝑜 x)), ∅)‘y))
Colors of variables: wff set class
This definition is referenced by:  fnom  5933  omexg  5934  omv  5938
  Copyright terms: Public domain W3C validator