Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omexg | GIF version |
Description: Ordinal multiplication is a set. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
omexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ·𝑜 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2560 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | 0ex 3884 | . . . . 5 ⊢ ∅ ∈ V | |
3 | vex 2560 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | omfnex 6029 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑧 ∈ V ↦ (𝑧 +𝑜 𝑥)) Fn V) | |
5 | 3, 4 | ax-mp 7 | . . . . 5 ⊢ (𝑧 ∈ V ↦ (𝑧 +𝑜 𝑥)) Fn V |
6 | 2, 5 | rdgexg 5976 | . . . 4 ⊢ (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 +𝑜 𝑥)), ∅)‘𝑦) ∈ V) |
7 | 1, 6 | ax-mp 7 | . . 3 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 +𝑜 𝑥)), ∅)‘𝑦) ∈ V |
8 | 7 | gen2 1339 | . 2 ⊢ ∀𝑥∀𝑦(rec((𝑧 ∈ V ↦ (𝑧 +𝑜 𝑥)), ∅)‘𝑦) ∈ V |
9 | df-omul 6006 | . . 3 ⊢ ·𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +𝑜 𝑥)), ∅)‘𝑦)) | |
10 | 9 | mpt2fvex 5829 | . 2 ⊢ ((∀𝑥∀𝑦(rec((𝑧 ∈ V ↦ (𝑧 +𝑜 𝑥)), ∅)‘𝑦) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ·𝑜 𝐵) ∈ V) |
11 | 8, 10 | mp3an1 1219 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ·𝑜 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∀wal 1241 ∈ wcel 1393 Vcvv 2557 ∅c0 3224 ↦ cmpt 3818 Oncon0 4100 Fn wfn 4897 ‘cfv 4902 (class class class)co 5512 reccrdg 5956 +𝑜 coa 5998 ·𝑜 comu 5999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-recs 5920 df-irdg 5957 df-oadd 6005 df-omul 6006 |
This theorem is referenced by: fnoei 6032 oeiexg 6033 oeiv 6036 oeicl 6042 omv2 6045 |
Copyright terms: Public domain | W3C validator |