Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-oexpi | GIF version |
Description: Define the ordinal
exponentiation operation.
This definition is similar to a conventional definition of exponentiation except that it defines ∅ ↑𝑜 𝐴 to be 1𝑜 for all 𝐴 ∈ On, in order to avoid having different cases for whether the base is ∅ or not. (Contributed by Mario Carneiro, 4-Jul-2019.) |
Ref | Expression |
---|---|
df-oexpi | ⊢ ↑𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coei 6000 | . 2 class ↑𝑜 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | con0 4100 | . . 3 class On | |
5 | 3 | cv 1242 | . . . 4 class 𝑦 |
6 | vz | . . . . . 6 setvar 𝑧 | |
7 | cvv 2557 | . . . . . 6 class V | |
8 | 6 | cv 1242 | . . . . . . 7 class 𝑧 |
9 | 2 | cv 1242 | . . . . . . 7 class 𝑥 |
10 | comu 5999 | . . . . . . 7 class ·𝑜 | |
11 | 8, 9, 10 | co 5512 | . . . . . 6 class (𝑧 ·𝑜 𝑥) |
12 | 6, 7, 11 | cmpt 3818 | . . . . 5 class (𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)) |
13 | c1o 5994 | . . . . 5 class 1𝑜 | |
14 | 12, 13 | crdg 5956 | . . . 4 class rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜) |
15 | 5, 14 | cfv 4902 | . . 3 class (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) |
16 | 2, 3, 4, 4, 15 | cmpt2 5514 | . 2 class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦)) |
17 | 1, 16 | wceq 1243 | 1 wff ↑𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦)) |
Colors of variables: wff set class |
This definition is referenced by: fnoei 6032 oeiexg 6033 oeiv 6036 |
Copyright terms: Public domain | W3C validator |