Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-csb | GIF version |
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2764, to prevent ambiguity. Theorem sbcel1g 2869 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 2878 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | csb 2852 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1242 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 1393 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wsbc 2764 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2026 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1243 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Colors of variables: wff set class |
This definition is referenced by: csb2 2854 csbeq1 2855 cbvcsb 2856 csbid 2859 csbco 2861 csbtt 2862 sbcel12g 2865 sbceqg 2866 csbeq2d 2874 csbvarg 2877 nfcsb1d 2880 nfcsbd 2883 csbie2g 2896 csbnestgf 2898 cbvralcsf 2908 cbvrexcsf 2909 cbvreucsf 2910 cbvrabcsf 2911 csbprc 3262 csbexga 3885 bdccsb 9980 |
Copyright terms: Public domain | W3C validator |