Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq1 GIF version

Theorem csbeq1 2855
 Description: Analog of dfsbcq 2766 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbeq1 (𝐴 = 𝐵𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)

Proof of Theorem csbeq1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2766 . . 3 (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝑦𝐶[𝐵 / 𝑥]𝑦𝐶))
21abbidv 2155 . 2 (𝐴 = 𝐵 → {𝑦[𝐴 / 𝑥]𝑦𝐶} = {𝑦[𝐵 / 𝑥]𝑦𝐶})
3 df-csb 2853 . 2 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
4 df-csb 2853 . 2 𝐵 / 𝑥𝐶 = {𝑦[𝐵 / 𝑥]𝑦𝐶}
52, 3, 43eqtr4g 2097 1 (𝐴 = 𝐵𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∈ wcel 1393  {cab 2026  [wsbc 2764  ⦋csb 2852 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-sbc 2765  df-csb 2853 This theorem is referenced by:  csbeq1d  2858  csbeq1a  2860  csbiebg  2889  sbcnestgf  2897  cbvralcsf  2908  cbvrexcsf  2909  cbvreucsf  2910  cbvrabcsf  2911  csbing  3144  sbcbrg  3813  csbopabg  3835  pofun  4049  csbima12g  4686  csbiotag  4895  fvmpts  5250  fvmpt2  5254  mptfvex  5256  fmptcof  5331  fmptcos  5332  fliftfuns  5438  csbriotag  5480  csbov123g  5543  eqerlem  6137  qliftfuns  6190
 Copyright terms: Public domain W3C validator