Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbriotag Structured version   GIF version

Theorem csbriotag 5402
 Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)
Assertion
Ref Expression
csbriotag (A 𝑉A / x(y B φ) = (y B [A / x]φ))
Distinct variable groups:   y,A   x,B   x,y
Allowed substitution hints:   φ(x,y)   A(x)   B(y)   𝑉(x,y)

Proof of Theorem csbriotag
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 csbeq1 2831 . . 3 (z = Az / x(y B φ) = A / x(y B φ))
2 dfsbcq2 2743 . . . 4 (z = A → ([z / x]φ[A / x]φ))
32riotabidv 5393 . . 3 (z = A → (y B [z / x]φ) = (y B [A / x]φ))
41, 3eqeq12d 2037 . 2 (z = A → (z / x(y B φ) = (y B [z / x]φ) ↔ A / x(y B φ) = (y B [A / x]φ)))
5 vex 2537 . . 3 z V
6 nfs1v 1798 . . . 4 x[z / x]φ
7 nfcv 2161 . . . 4 xB
86, 7nfriota 5399 . . 3 x(y B [z / x]φ)
9 sbequ12 1637 . . . 4 (x = z → (φ ↔ [z / x]φ))
109riotabidv 5393 . . 3 (x = z → (y B φ) = (y B [z / x]φ))
115, 8, 10csbief 2867 . 2 z / x(y B φ) = (y B [z / x]φ)
124, 11vtoclg 2589 1 (A 𝑉A / x(y B φ) = (y B [A / x]φ))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1228   ∈ wcel 1375  [wsb 1628  [wsbc 2740  ⦋csb 2828  ℩crio 5390 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1364  ax-ie2 1365  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2005 This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1629  df-clab 2010  df-cleq 2016  df-clel 2019  df-nfc 2150  df-rex 2289  df-v 2536  df-sbc 2741  df-csb 2829  df-sn 3355  df-uni 3554  df-iota 4792  df-riota 5391 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator