![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbief | GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbief.1 | ⊢ 𝐴 ∈ V |
csbief.2 | ⊢ Ⅎ𝑥𝐶 |
csbief.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbief | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbief.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | csbief.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) |
4 | csbief.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | 3, 4 | csbiegf 2890 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
6 | 1, 5 | ax-mp 7 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 Ⅎwnfc 2165 Vcvv 2557 ⦋csb 2852 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-sbc 2765 df-csb 2853 |
This theorem is referenced by: csbing 3144 csbopabg 3835 pofun 4049 csbima12g 4686 csbiotag 4895 csbriotag 5480 csbov123g 5543 eqerlem 6137 |
Copyright terms: Public domain | W3C validator |