ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvriotav Structured version   GIF version

Theorem cbvriotav 5422
Description: Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
cbvriotav.1 (x = y → (φψ))
Assertion
Ref Expression
cbvriotav (x A φ) = (y A ψ)
Distinct variable groups:   x,A   y,A   φ,y   ψ,x
Allowed substitution hints:   φ(x)   ψ(y)

Proof of Theorem cbvriotav
StepHypRef Expression
1 nfv 1418 . 2 yφ
2 nfv 1418 . 2 xψ
3 cbvriotav.1 . 2 (x = y → (φψ))
41, 2, 3cbvriota 5421 1 (x A φ) = (y A ψ)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1242  crio 5410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-sn 3373  df-uni 3572  df-iota 4810  df-riota 5411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator