Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbeq1a | GIF version |
Description: Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1a | ⊢ (𝑥 = 𝐴 → 𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbid 2859 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐵 = 𝐵 | |
2 | csbeq1 2855 | . 2 ⊢ (𝑥 = 𝐴 → ⦋𝑥 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
3 | 1, 2 | syl5eqr 2086 | 1 ⊢ (𝑥 = 𝐴 → 𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ⦋csb 2852 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-sbc 2765 df-csb 2853 |
This theorem is referenced by: csbhypf 2885 csbiebt 2886 sbcnestgf 2897 cbvralcsf 2908 cbvrexcsf 2909 cbvreucsf 2910 cbvrabcsf 2911 csbing 3144 sbcbrg 3813 moop2 3988 pofun 4049 eusvnf 4185 opeliunxp 4395 elrnmpt1 4585 csbima12g 4686 fvmpts 5250 fvmpt2 5254 mptfvex 5256 fmptco 5330 fmptcof 5331 fmptcos 5332 elabrex 5397 fliftfuns 5438 csbov123g 5543 ovmpt2s 5624 csbopeq1a 5814 mpt2mptsx 5823 dmmpt2ssx 5825 fmpt2x 5826 mpt2fvex 5829 fmpt2co 5837 eqerlem 6137 qliftfuns 6190 |
Copyright terms: Public domain | W3C validator |