ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiebt GIF version

Theorem csbiebt 2886
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 2890.) (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbiebt ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiebt
StepHypRef Expression
1 elex 2566 . 2 (𝐴𝑉𝐴 ∈ V)
2 spsbc 2775 . . . . 5 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → [𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶)))
32adantr 261 . . . 4 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → [𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶)))
4 simpl 102 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝐴 ∈ V)
5 biimt 230 . . . . . . 7 (𝑥 = 𝐴 → (𝐵 = 𝐶 ↔ (𝑥 = 𝐴𝐵 = 𝐶)))
6 csbeq1a 2860 . . . . . . . 8 (𝑥 = 𝐴𝐵 = 𝐴 / 𝑥𝐵)
76eqeq1d 2048 . . . . . . 7 (𝑥 = 𝐴 → (𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
85, 7bitr3d 179 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
98adantl 262 . . . . 5 (((𝐴 ∈ V ∧ 𝑥𝐶) ∧ 𝑥 = 𝐴) → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
10 nfv 1421 . . . . . 6 𝑥 𝐴 ∈ V
11 nfnfc1 2181 . . . . . 6 𝑥𝑥𝐶
1210, 11nfan 1457 . . . . 5 𝑥(𝐴 ∈ V ∧ 𝑥𝐶)
13 nfcsb1v 2882 . . . . . . 7 𝑥𝐴 / 𝑥𝐵
1413a1i 9 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝑥𝐴 / 𝑥𝐵)
15 simpr 103 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝑥𝐶)
1614, 15nfeqd 2192 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐶) → Ⅎ𝑥𝐴 / 𝑥𝐵 = 𝐶)
174, 9, 12, 16sbciedf 2798 . . . 4 ((𝐴 ∈ V ∧ 𝑥𝐶) → ([𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
183, 17sylibd 138 . . 3 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → 𝐴 / 𝑥𝐵 = 𝐶))
1913a1i 9 . . . . . . . 8 (𝑥𝐶𝑥𝐴 / 𝑥𝐵)
20 id 19 . . . . . . . 8 (𝑥𝐶𝑥𝐶)
2119, 20nfeqd 2192 . . . . . . 7 (𝑥𝐶 → Ⅎ𝑥𝐴 / 𝑥𝐵 = 𝐶)
2211, 21nfan1 1456 . . . . . 6 𝑥(𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶)
237biimprcd 149 . . . . . . 7 (𝐴 / 𝑥𝐵 = 𝐶 → (𝑥 = 𝐴𝐵 = 𝐶))
2423adantl 262 . . . . . 6 ((𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶) → (𝑥 = 𝐴𝐵 = 𝐶))
2522, 24alrimi 1415 . . . . 5 ((𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶) → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶))
2625ex 108 . . . 4 (𝑥𝐶 → (𝐴 / 𝑥𝐵 = 𝐶 → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
2726adantl 262 . . 3 ((𝐴 ∈ V ∧ 𝑥𝐶) → (𝐴 / 𝑥𝐵 = 𝐶 → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
2818, 27impbid 120 . 2 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
291, 28sylan 267 1 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241   = wceq 1243  wcel 1393  wnfc 2165  Vcvv 2557  [wsbc 2764  csb 2852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765  df-csb 2853
This theorem is referenced by:  csbiedf  2887  csbieb  2888  csbiegf  2890
  Copyright terms: Public domain W3C validator