ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylibd Structured version   GIF version

Theorem sylibd 138
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.)
Hypotheses
Ref Expression
sylibd.1 (φ → (ψχ))
sylibd.2 (φ → (χθ))
Assertion
Ref Expression
sylibd (φ → (ψθ))

Proof of Theorem sylibd
StepHypRef Expression
1 sylibd.1 . 2 (φ → (ψχ))
2 sylibd.2 . . 3 (φ → (χθ))
32biimpd 132 . 2 (φ → (χθ))
41, 3syld 40 1 (φ → (ψθ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  3imtr3d  191  dvelimdf  1889  ceqsalt  2574  sbceqal  2808  sbcimdv  2817  csbiebt  2880  rspcsbela  2899  preqr1g  3528  repizf2  3906  copsexg  3972  onun2  4182  suc11g  4235  elrnrexdm  5249  isoselem  5402  riotass2  5437  nnm00  6038  ecopovtrn  6139  ecopovtrng  6142  enq0tr  6416  addnqprl  6512  addnqpru  6513  mulnqprl  6547  mulnqpru  6548  recexprlemss1l  6605  recexprlemss1u  6606  mulextsr1lem  6666  pitonn  6704  cnegexlem1  6943  ltadd2  7172  mulext  7358  mulgt1  7570  lt2halves  7897  addltmul  7898  zextlt  8068  recnz  8069  zeo  8079  peano5uzti  8082  irradd  8315  irrmul  8316  xltneg  8479  icc0r  8525  fznuz  8694  uznfz  8695  bj-peano4  9343
  Copyright terms: Public domain W3C validator