Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel1g GIF version

Theorem sbcel1g 2869
 Description: Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵 ∈ 𝐶, whereas the scope of ⦋𝐴 / 𝑥⦌ is the class 𝐵. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
sbcel1g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel1g
StepHypRef Expression
1 sbcel12g 2865 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2 csbconstg 2864 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32eleq2d 2107 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵𝐶))
41, 3bitrd 177 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   ∈ wcel 1393  [wsbc 2764  ⦋csb 2852 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765  df-csb 2853 This theorem is referenced by:  rspcsbela  2905
 Copyright terms: Public domain W3C validator