ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1lem GIF version

Theorem mulextsr1lem 6864
Description: Lemma for mulextsr1 6865. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
mulextsr1lem (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))

Proof of Theorem mulextsr1lem
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcomprg 6676 . . . . . . 7 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
21adantl 262 . . . . . 6 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
3 addclpr 6635 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
43adantl 262 . . . . . . 7 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
5 simp2l 930 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑍P)
6 simp3r 933 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑉P)
7 mulclpr 6670 . . . . . . . 8 ((𝑍P𝑉P) → (𝑍 ·P 𝑉) ∈ P)
85, 6, 7syl2anc 391 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 ·P 𝑉) ∈ P)
9 simp1r 929 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑌P)
10 mulclpr 6670 . . . . . . . 8 ((𝑌P𝑉P) → (𝑌 ·P 𝑉) ∈ P)
119, 6, 10syl2anc 391 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑌 ·P 𝑉) ∈ P)
124, 8, 11caovcld 5654 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)) ∈ P)
13 simp1l 928 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑋P)
14 simp3l 932 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑈P)
15 mulclpr 6670 . . . . . . . 8 ((𝑋P𝑈P) → (𝑋 ·P 𝑈) ∈ P)
1613, 14, 15syl2anc 391 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 ·P 𝑈) ∈ P)
17 simp2r 931 . . . . . . . 8 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → 𝑊P)
18 mulclpr 6670 . . . . . . . 8 ((𝑊P𝑈P) → (𝑊 ·P 𝑈) ∈ P)
1917, 14, 18syl2anc 391 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑊 ·P 𝑈) ∈ P)
204, 16, 19caovcld 5654 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)) ∈ P)
212, 12, 20caovcomd 5657 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)) +P ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈))) = (((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)) +P ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉))))
22 addassprg 6677 . . . . . . 7 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
2322adantl 262 . . . . . 6 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
2416, 11, 8, 2, 23, 19, 4caov411d 5686 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈))) = (((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)) +P ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈))))
25 distrprg 6686 . . . . . . . 8 ((𝑓P𝑔PP) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
2625adantl 262 . . . . . . 7 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔PP)) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
27 mulcomprg 6678 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
2827adantl 262 . . . . . . 7 ((((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
2926, 13, 17, 14, 4, 28caovdir2d 5677 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑈) = ((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)))
3026, 5, 9, 6, 4, 28caovdir2d 5677 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑉) = ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉)))
3129, 30oveq12d 5530 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉)) = (((𝑋 ·P 𝑈) +P (𝑊 ·P 𝑈)) +P ((𝑍 ·P 𝑉) +P (𝑌 ·P 𝑉))))
3221, 24, 313eqtr4d 2082 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈))) = (((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉)))
33 mulclpr 6670 . . . . . . 7 ((𝑋P𝑉P) → (𝑋 ·P 𝑉) ∈ P)
3413, 6, 33syl2anc 391 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 ·P 𝑉) ∈ P)
35 mulclpr 6670 . . . . . . 7 ((𝑌P𝑈P) → (𝑌 ·P 𝑈) ∈ P)
369, 14, 35syl2anc 391 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑌 ·P 𝑈) ∈ P)
37 mulclpr 6670 . . . . . . 7 ((𝑍P𝑈P) → (𝑍 ·P 𝑈) ∈ P)
385, 14, 37syl2anc 391 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 ·P 𝑈) ∈ P)
39 mulclpr 6670 . . . . . . 7 ((𝑊P𝑉P) → (𝑊 ·P 𝑉) ∈ P)
4017, 6, 39syl2anc 391 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑊 ·P 𝑉) ∈ P)
4134, 36, 38, 2, 23, 40, 4caov411d 5686 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) = (((𝑍 ·P 𝑈) +P (𝑌 ·P 𝑈)) +P ((𝑋 ·P 𝑉) +P (𝑊 ·P 𝑉))))
4226, 5, 9, 14, 4, 28caovdir2d 5677 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑈) = ((𝑍 ·P 𝑈) +P (𝑌 ·P 𝑈)))
4326, 13, 17, 6, 4, 28caovdir2d 5677 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑉) = ((𝑋 ·P 𝑉) +P (𝑊 ·P 𝑉)))
4442, 43oveq12d 5530 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) = (((𝑍 ·P 𝑈) +P (𝑌 ·P 𝑈)) +P ((𝑋 ·P 𝑉) +P (𝑊 ·P 𝑉))))
4541, 44eqtr4d 2075 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) = (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)))
4632, 45breq12d 3777 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) ↔ (((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉))))
4729, 20eqeltrd 2114 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑈) ∈ P)
4830, 12eqeltrd 2114 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑉) ∈ P)
49 addclpr 6635 . . . . . . 7 ((𝑍P𝑌P) → (𝑍 +P 𝑌) ∈ P)
505, 9, 49syl2anc 391 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 +P 𝑌) ∈ P)
51 mulclpr 6670 . . . . . 6 (((𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑍 +P 𝑌) ·P 𝑈) ∈ P)
5250, 14, 51syl2anc 391 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑈) ∈ P)
53 addclpr 6635 . . . . . . 7 ((𝑋P𝑊P) → (𝑋 +P 𝑊) ∈ P)
5413, 17, 53syl2anc 391 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 +P 𝑊) ∈ P)
55 mulclpr 6670 . . . . . 6 (((𝑋 +P 𝑊) ∈ P𝑉P) → ((𝑋 +P 𝑊) ·P 𝑉) ∈ P)
5654, 6, 55syl2anc 391 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑉) ∈ P)
57 addextpr 6719 . . . . 5 (((((𝑋 +P 𝑊) ·P 𝑈) ∈ P ∧ ((𝑍 +P 𝑌) ·P 𝑉) ∈ P) ∧ (((𝑍 +P 𝑌) ·P 𝑈) ∈ P ∧ ((𝑋 +P 𝑊) ·P 𝑉) ∈ P)) → ((((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ∨ ((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉))))
5847, 48, 52, 56, 57syl22anc 1136 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ∨ ((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉))))
59 mulcomprg 6678 . . . . . . . . 9 (((𝑋 +P 𝑊) ∈ P𝑈P) → ((𝑋 +P 𝑊) ·P 𝑈) = (𝑈 ·P (𝑋 +P 𝑊)))
60593adant2 923 . . . . . . . 8 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑋 +P 𝑊) ·P 𝑈) = (𝑈 ·P (𝑋 +P 𝑊)))
61 mulcomprg 6678 . . . . . . . . 9 (((𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑍 +P 𝑌) ·P 𝑈) = (𝑈 ·P (𝑍 +P 𝑌)))
62613adant1 922 . . . . . . . 8 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑍 +P 𝑌) ·P 𝑈) = (𝑈 ·P (𝑍 +P 𝑌)))
6360, 62breq12d 3777 . . . . . . 7 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ↔ (𝑈 ·P (𝑋 +P 𝑊))<P (𝑈 ·P (𝑍 +P 𝑌))))
64 ltmprr 6740 . . . . . . 7 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → ((𝑈 ·P (𝑋 +P 𝑊))<P (𝑈 ·P (𝑍 +P 𝑌)) → (𝑋 +P 𝑊)<P (𝑍 +P 𝑌)))
6563, 64sylbid 139 . . . . . 6 (((𝑋 +P 𝑊) ∈ P ∧ (𝑍 +P 𝑌) ∈ P𝑈P) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) → (𝑋 +P 𝑊)<P (𝑍 +P 𝑌)))
6654, 50, 14, 65syl3anc 1135 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) → (𝑋 +P 𝑊)<P (𝑍 +P 𝑌)))
67 mulcomprg 6678 . . . . . . . 8 (((𝑍 +P 𝑌) ∈ P𝑉P) → ((𝑍 +P 𝑌) ·P 𝑉) = (𝑉 ·P (𝑍 +P 𝑌)))
6850, 6, 67syl2anc 391 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌) ·P 𝑉) = (𝑉 ·P (𝑍 +P 𝑌)))
69 mulcomprg 6678 . . . . . . . 8 (((𝑋 +P 𝑊) ∈ P𝑉P) → ((𝑋 +P 𝑊) ·P 𝑉) = (𝑉 ·P (𝑋 +P 𝑊)))
7054, 6, 69syl2anc 391 . . . . . . 7 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊) ·P 𝑉) = (𝑉 ·P (𝑋 +P 𝑊)))
7168, 70breq12d 3777 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉) ↔ (𝑉 ·P (𝑍 +P 𝑌))<P (𝑉 ·P (𝑋 +P 𝑊))))
72 ltmprr 6740 . . . . . . 7 (((𝑍 +P 𝑌) ∈ P ∧ (𝑋 +P 𝑊) ∈ P𝑉P) → ((𝑉 ·P (𝑍 +P 𝑌))<P (𝑉 ·P (𝑋 +P 𝑊)) → (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)))
7350, 54, 6, 72syl3anc 1135 . . . . . 6 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑉 ·P (𝑍 +P 𝑌))<P (𝑉 ·P (𝑋 +P 𝑊)) → (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)))
7471, 73sylbid 139 . . . . 5 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉) → (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)))
7566, 74orim12d 700 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 +P 𝑊) ·P 𝑈)<P ((𝑍 +P 𝑌) ·P 𝑈) ∨ ((𝑍 +P 𝑌) ·P 𝑉)<P ((𝑋 +P 𝑊) ·P 𝑉)) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊))))
7658, 75syld 40 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 +P 𝑊) ·P 𝑈) +P ((𝑍 +P 𝑌) ·P 𝑉))<P (((𝑍 +P 𝑌) ·P 𝑈) +P ((𝑋 +P 𝑊) ·P 𝑉)) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊))))
7746, 76sylbid 139 . 2 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊))))
78 addcomprg 6676 . . . . 5 ((𝑍P𝑌P) → (𝑍 +P 𝑌) = (𝑌 +P 𝑍))
795, 9, 78syl2anc 391 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑍 +P 𝑌) = (𝑌 +P 𝑍))
8079breq2d 3776 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ↔ (𝑋 +P 𝑊)<P (𝑌 +P 𝑍)))
81 addcomprg 6676 . . . . 5 ((𝑋P𝑊P) → (𝑋 +P 𝑊) = (𝑊 +P 𝑋))
8213, 17, 81syl2anc 391 . . . 4 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (𝑋 +P 𝑊) = (𝑊 +P 𝑋))
8382breq2d 3776 . . 3 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((𝑍 +P 𝑌)<P (𝑋 +P 𝑊) ↔ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋)))
8480, 83orbi12d 707 . 2 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → (((𝑋 +P 𝑊)<P (𝑍 +P 𝑌) ∨ (𝑍 +P 𝑌)<P (𝑋 +P 𝑊)) ↔ ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))
8577, 84sylibd 138 1 (((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wo 629  w3a 885   = wceq 1243  wcel 1393   class class class wbr 3764  (class class class)co 5512  Pcnp 6389   +P cpp 6391   ·P cmp 6392  <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-imp 6567  df-iltp 6568
This theorem is referenced by:  mulextsr1  6865
  Copyright terms: Public domain W3C validator