ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap Structured version   GIF version

Definition df-ap 7346
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 7420 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 7369), symmetry (apsym 7370), and cotransitivity (apcotr 7371). Apartness implies negated equality, as seen at apne 7387, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 7386).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap # = {⟨x, y⟩ ∣ 𝑟 𝑠 𝑡 u ℝ ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))}
Distinct variable group:   𝑠,𝑟,𝑡,u,x,y

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 7345 . 2 class #
2 vx . . . . . . . . . . 11 setvar x
32cv 1241 . . . . . . . . . 10 class x
4 vr . . . . . . . . . . . 12 setvar 𝑟
54cv 1241 . . . . . . . . . . 11 class 𝑟
6 ci 6693 . . . . . . . . . . . 12 class i
7 vs . . . . . . . . . . . . 13 setvar 𝑠
87cv 1241 . . . . . . . . . . . 12 class 𝑠
9 cmul 6696 . . . . . . . . . . . 12 class ·
106, 8, 9co 5455 . . . . . . . . . . 11 class (i · 𝑠)
11 caddc 6694 . . . . . . . . . . 11 class +
125, 10, 11co 5455 . . . . . . . . . 10 class (𝑟 + (i · 𝑠))
133, 12wceq 1242 . . . . . . . . 9 wff x = (𝑟 + (i · 𝑠))
14 vy . . . . . . . . . . 11 setvar y
1514cv 1241 . . . . . . . . . 10 class y
16 vt . . . . . . . . . . . 12 setvar 𝑡
1716cv 1241 . . . . . . . . . . 11 class 𝑡
18 vu . . . . . . . . . . . . 13 setvar u
1918cv 1241 . . . . . . . . . . . 12 class u
206, 19, 9co 5455 . . . . . . . . . . 11 class (i · u)
2117, 20, 11co 5455 . . . . . . . . . 10 class (𝑡 + (i · u))
2215, 21wceq 1242 . . . . . . . . 9 wff y = (𝑡 + (i · u))
2313, 22wa 97 . . . . . . . 8 wff (x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u)))
24 creap 7338 . . . . . . . . . 10 class #
255, 17, 24wbr 3755 . . . . . . . . 9 wff 𝑟 # 𝑡
268, 19, 24wbr 3755 . . . . . . . . 9 wff 𝑠 # u
2725, 26wo 628 . . . . . . . 8 wff (𝑟 # 𝑡 𝑠 # u)
2823, 27wa 97 . . . . . . 7 wff ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))
29 cr 6690 . . . . . . 7 class
3028, 18, 29wrex 2301 . . . . . 6 wff u ℝ ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))
3130, 16, 29wrex 2301 . . . . 5 wff 𝑡 u ℝ ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))
3231, 7, 29wrex 2301 . . . 4 wff 𝑠 𝑡 u ℝ ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))
3332, 4, 29wrex 2301 . . 3 wff 𝑟 𝑠 𝑡 u ℝ ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))
3433, 2, 14copab 3808 . 2 class {⟨x, y⟩ ∣ 𝑟 𝑠 𝑡 u ℝ ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))}
351, 34wceq 1242 1 wff # = {⟨x, y⟩ ∣ 𝑟 𝑠 𝑡 u ℝ ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))}
Colors of variables: wff set class
This definition is referenced by:  apreap  7351  apreim  7367
  Copyright terms: Public domain W3C validator