Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  apti GIF version

Theorem apti 7613
 Description: Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
apti ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))

Proof of Theorem apti
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7023 . . 3 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
21adantr 261 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
3 cnre 7023 . . . . . . 7 (𝐵 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
43adantl 262 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
54ad2antrr 457 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
6 simpr 103 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
76ad3antrrr 461 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
8 simplr 482 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ))
9 cru 7593 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
107, 8, 9syl2anc 391 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
11 simpllr 486 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝐴 = (𝑥 + (i · 𝑦)))
12 simpr 103 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝐵 = (𝑧 + (i · 𝑤)))
1311, 12eqeq12d 2054 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 = 𝐵 ↔ (𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤))))
14 apreim 7594 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
1514notbid 592 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → (¬ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ ¬ (𝑥 # 𝑧𝑦 # 𝑤)))
16 ioran 669 . . . . . . . . . . 11 (¬ (𝑥 # 𝑧𝑦 # 𝑤) ↔ (¬ 𝑥 # 𝑧 ∧ ¬ 𝑦 # 𝑤))
1715, 16syl6bb 185 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → (¬ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (¬ 𝑥 # 𝑧 ∧ ¬ 𝑦 # 𝑤)))
187, 8, 17syl2anc 391 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (¬ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (¬ 𝑥 # 𝑧 ∧ ¬ 𝑦 # 𝑤)))
1911, 12breq12d 3777 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 # 𝐵 ↔ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤))))
2019notbid 592 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (¬ 𝐴 # 𝐵 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤))))
217simpld 105 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑥 ∈ ℝ)
228simpld 105 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑧 ∈ ℝ)
23 reapti 7570 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 = 𝑧 ↔ ¬ 𝑥 # 𝑧))
24 apreap 7578 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 # 𝑧𝑥 # 𝑧))
2524notbid 592 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (¬ 𝑥 # 𝑧 ↔ ¬ 𝑥 # 𝑧))
2623, 25bitr4d 180 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 = 𝑧 ↔ ¬ 𝑥 # 𝑧))
2721, 22, 26syl2anc 391 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝑥 = 𝑧 ↔ ¬ 𝑥 # 𝑧))
287simprd 107 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑦 ∈ ℝ)
298simprd 107 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑤 ∈ ℝ)
30 reapti 7570 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑦 = 𝑤 ↔ ¬ 𝑦 # 𝑤))
31 apreap 7578 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑦 # 𝑤𝑦 # 𝑤))
3231notbid 592 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (¬ 𝑦 # 𝑤 ↔ ¬ 𝑦 # 𝑤))
3330, 32bitr4d 180 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑦 = 𝑤 ↔ ¬ 𝑦 # 𝑤))
3428, 29, 33syl2anc 391 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝑦 = 𝑤 ↔ ¬ 𝑦 # 𝑤))
3527, 34anbi12d 442 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ((𝑥 = 𝑧𝑦 = 𝑤) ↔ (¬ 𝑥 # 𝑧 ∧ ¬ 𝑦 # 𝑤)))
3618, 20, 353bitr4d 209 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (¬ 𝐴 # 𝐵 ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
3710, 13, 363bitr4d 209 . . . . . . 7 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
3837ex 108 . . . . . 6 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → (𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)))
3938rexlimdvva 2440 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)))
405, 39mpd 13 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
4140ex 108 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)))
4241rexlimdvva 2440 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)))
432, 42mpd 13 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ↔ wb 98   ∨ wo 629   = wceq 1243   ∈ wcel 1393  ∃wrex 2307   class class class wbr 3764  (class class class)co 5512  ℂcc 6887  ℝcr 6888  ici 6891   + caddc 6892   · cmul 6894   #ℝ creap 7565   # cap 7572 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-ltxr 7065  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573 This theorem is referenced by:  apne  7614  qapne  8574  expeq0  9286  recvguniq  9593  abs00  9662  climuni  9814
 Copyright terms: Public domain W3C validator