Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreap Structured version   GIF version

Theorem apreap 7371
 Description: Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
Assertion
Ref Expression
apreap ((A B ℝ) → (A # BA # B))

Proof of Theorem apreap
Dummy variables 𝑟 𝑠 𝑡 u x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2043 . . . . . . . 8 (x = A → (x = (𝑟 + (i · 𝑠)) ↔ A = (𝑟 + (i · 𝑠))))
21anbi1d 438 . . . . . . 7 (x = A → ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) ↔ (A = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u)))))
32anbi1d 438 . . . . . 6 (x = A → (((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) ↔ ((A = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))))
432rexbidv 2343 . . . . 5 (x = A → (𝑡 u ℝ ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) ↔ 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))))
542rexbidv 2343 . . . 4 (x = A → (𝑟 𝑠 𝑡 u ℝ ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) ↔ 𝑟 𝑠 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))))
6 eqeq1 2043 . . . . . . . 8 (y = B → (y = (𝑡 + (i · u)) ↔ B = (𝑡 + (i · u))))
76anbi2d 437 . . . . . . 7 (y = B → ((A = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) ↔ (A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u)))))
87anbi1d 438 . . . . . 6 (y = B → (((A = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) ↔ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))))
982rexbidv 2343 . . . . 5 (y = B → (𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) ↔ 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))))
1092rexbidv 2343 . . . 4 (y = B → (𝑟 𝑠 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) ↔ 𝑟 𝑠 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))))
11 df-ap 7366 . . . 4 # = {⟨x, y⟩ ∣ 𝑟 𝑠 𝑡 u ℝ ((x = (𝑟 + (i · 𝑠)) y = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))}
125, 10, 11brabg 3997 . . 3 ((A B ℝ) → (A # B𝑟 𝑠 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))))
13 simplll 485 . . . . . . . . . . . . 13 ((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) → A ℝ)
1413adantr 261 . . . . . . . . . . . 12 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → A ℝ)
15 simplrl 487 . . . . . . . . . . . . 13 ((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) → 𝑟 ℝ)
1615adantr 261 . . . . . . . . . . . 12 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → 𝑟 ℝ)
17 simplrr 488 . . . . . . . . . . . . 13 ((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) → 𝑠 ℝ)
1817adantr 261 . . . . . . . . . . . 12 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → 𝑠 ℝ)
19 simprll 489 . . . . . . . . . . . 12 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → A = (𝑟 + (i · 𝑠)))
20 rereim 7370 . . . . . . . . . . . 12 (((A 𝑟 ℝ) (𝑠 A = (𝑟 + (i · 𝑠)))) → (𝑟 = A 𝑠 = 0))
2114, 16, 18, 19, 20syl22anc 1135 . . . . . . . . . . 11 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → (𝑟 = A 𝑠 = 0))
2221simprd 107 . . . . . . . . . 10 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → 𝑠 = 0)
23 simpllr 486 . . . . . . . . . . . . 13 ((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) → B ℝ)
2423adantr 261 . . . . . . . . . . . 12 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → B ℝ)
25 simplrl 487 . . . . . . . . . . . 12 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → 𝑡 ℝ)
26 simplrr 488 . . . . . . . . . . . 12 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → u ℝ)
27 simprlr 490 . . . . . . . . . . . 12 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → B = (𝑡 + (i · u)))
28 rereim 7370 . . . . . . . . . . . 12 (((B 𝑡 ℝ) (u B = (𝑡 + (i · u)))) → (𝑡 = B u = 0))
2924, 25, 26, 27, 28syl22anc 1135 . . . . . . . . . . 11 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → (𝑡 = B u = 0))
3029simprd 107 . . . . . . . . . 10 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → u = 0)
3122, 30eqtr4d 2072 . . . . . . . . 9 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → 𝑠 = u)
32 reapti 7363 . . . . . . . . . 10 ((𝑠 u ℝ) → (𝑠 = u ↔ ¬ 𝑠 # u))
3318, 26, 32syl2anc 391 . . . . . . . . 9 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → (𝑠 = u ↔ ¬ 𝑠 # u))
3431, 33mpbid 135 . . . . . . . 8 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → ¬ 𝑠 # u)
35 simprr 484 . . . . . . . 8 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → (𝑟 # 𝑡 𝑠 # u))
3634, 35ecased 1238 . . . . . . 7 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → 𝑟 # 𝑡)
3721simpld 105 . . . . . . 7 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → 𝑟 = A)
3829simpld 105 . . . . . . 7 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → 𝑡 = B)
3936, 37, 383brtr3d 3784 . . . . . 6 (((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))) → A # B)
4039ex 108 . . . . 5 ((((A B ℝ) (𝑟 𝑠 ℝ)) (𝑡 u ℝ)) → (((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) → A # B))
4140rexlimdvva 2434 . . . 4 (((A B ℝ) (𝑟 𝑠 ℝ)) → (𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) → A # B))
4241rexlimdvva 2434 . . 3 ((A B ℝ) → (𝑟 𝑠 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) → A # B))
4312, 42sylbid 139 . 2 ((A B ℝ) → (A # BA # B))
44 ax-icn 6778 . . . . . . . 8 i
4544mul01i 7184 . . . . . . 7 (i · 0) = 0
4645oveq2i 5466 . . . . . 6 (A + (i · 0)) = (A + 0)
47 simp1 903 . . . . . . . 8 ((A B A # B) → A ℝ)
4847recnd 6851 . . . . . . 7 ((A B A # B) → A ℂ)
4948addid1d 6959 . . . . . 6 ((A B A # B) → (A + 0) = A)
5046, 49syl5req 2082 . . . . 5 ((A B A # B) → A = (A + (i · 0)))
5145oveq2i 5466 . . . . . 6 (B + (i · 0)) = (B + 0)
52 simp2 904 . . . . . . . 8 ((A B A # B) → B ℝ)
5352recnd 6851 . . . . . . 7 ((A B A # B) → B ℂ)
5453addid1d 6959 . . . . . 6 ((A B A # B) → (B + 0) = B)
5551, 54syl5req 2082 . . . . 5 ((A B A # B) → B = (B + (i · 0)))
56 olc 631 . . . . . . 7 (A # B → (0 # 0 A # B))
57563ad2ant3 926 . . . . . 6 ((A B A # B) → (0 # 0 A # B))
5857orcomd 647 . . . . 5 ((A B A # B) → (A # B 0 # 0))
5950, 55, 58jca31 292 . . . 4 ((A B A # B) → ((A = (A + (i · 0)) B = (B + (i · 0))) (A # B 0 # 0)))
60 0red 6826 . . . . . . . 8 ((A B A # B) → 0 ℝ)
61 simpr 103 . . . . . . . . . . . . 13 (((A B A # B) u = 0) → u = 0)
6261oveq2d 5471 . . . . . . . . . . . 12 (((A B A # B) u = 0) → (i · u) = (i · 0))
6362oveq2d 5471 . . . . . . . . . . 11 (((A B A # B) u = 0) → (B + (i · u)) = (B + (i · 0)))
6463eqeq2d 2048 . . . . . . . . . 10 (((A B A # B) u = 0) → (B = (B + (i · u)) ↔ B = (B + (i · 0))))
6564anbi2d 437 . . . . . . . . 9 (((A B A # B) u = 0) → ((A = (A + (i · 0)) B = (B + (i · u))) ↔ (A = (A + (i · 0)) B = (B + (i · 0)))))
6661breq2d 3767 . . . . . . . . . 10 (((A B A # B) u = 0) → (0 # u ↔ 0 # 0))
6766orbi2d 703 . . . . . . . . 9 (((A B A # B) u = 0) → ((A # B 0 # u) ↔ (A # B 0 # 0)))
6865, 67anbi12d 442 . . . . . . . 8 (((A B A # B) u = 0) → (((A = (A + (i · 0)) B = (B + (i · u))) (A # B 0 # u)) ↔ ((A = (A + (i · 0)) B = (B + (i · 0))) (A # B 0 # 0))))
6960, 68rspcedv 2654 . . . . . . 7 ((A B A # B) → (((A = (A + (i · 0)) B = (B + (i · 0))) (A # B 0 # 0)) → u ℝ ((A = (A + (i · 0)) B = (B + (i · u))) (A # B 0 # u))))
70 simpr 103 . . . . . . . . . . . . 13 (((A B A # B) 𝑡 = B) → 𝑡 = B)
7170oveq1d 5470 . . . . . . . . . . . 12 (((A B A # B) 𝑡 = B) → (𝑡 + (i · u)) = (B + (i · u)))
7271eqeq2d 2048 . . . . . . . . . . 11 (((A B A # B) 𝑡 = B) → (B = (𝑡 + (i · u)) ↔ B = (B + (i · u))))
7372anbi2d 437 . . . . . . . . . 10 (((A B A # B) 𝑡 = B) → ((A = (A + (i · 0)) B = (𝑡 + (i · u))) ↔ (A = (A + (i · 0)) B = (B + (i · u)))))
7470breq2d 3767 . . . . . . . . . . 11 (((A B A # B) 𝑡 = B) → (A # 𝑡A # B))
7574orbi1d 704 . . . . . . . . . 10 (((A B A # B) 𝑡 = B) → ((A # 𝑡 0 # u) ↔ (A # B 0 # u)))
7673, 75anbi12d 442 . . . . . . . . 9 (((A B A # B) 𝑡 = B) → (((A = (A + (i · 0)) B = (𝑡 + (i · u))) (A # 𝑡 0 # u)) ↔ ((A = (A + (i · 0)) B = (B + (i · u))) (A # B 0 # u))))
7776rexbidv 2321 . . . . . . . 8 (((A B A # B) 𝑡 = B) → (u ℝ ((A = (A + (i · 0)) B = (𝑡 + (i · u))) (A # 𝑡 0 # u)) ↔ u ℝ ((A = (A + (i · 0)) B = (B + (i · u))) (A # B 0 # u))))
7852, 77rspcedv 2654 . . . . . . 7 ((A B A # B) → (u ℝ ((A = (A + (i · 0)) B = (B + (i · u))) (A # B 0 # u)) → 𝑡 u ℝ ((A = (A + (i · 0)) B = (𝑡 + (i · u))) (A # 𝑡 0 # u))))
7969, 78syld 40 . . . . . 6 ((A B A # B) → (((A = (A + (i · 0)) B = (B + (i · 0))) (A # B 0 # 0)) → 𝑡 u ℝ ((A = (A + (i · 0)) B = (𝑡 + (i · u))) (A # 𝑡 0 # u))))
80 simpr 103 . . . . . . . . . . . . 13 (((A B A # B) 𝑠 = 0) → 𝑠 = 0)
8180oveq2d 5471 . . . . . . . . . . . 12 (((A B A # B) 𝑠 = 0) → (i · 𝑠) = (i · 0))
8281oveq2d 5471 . . . . . . . . . . 11 (((A B A # B) 𝑠 = 0) → (A + (i · 𝑠)) = (A + (i · 0)))
8382eqeq2d 2048 . . . . . . . . . 10 (((A B A # B) 𝑠 = 0) → (A = (A + (i · 𝑠)) ↔ A = (A + (i · 0))))
8483anbi1d 438 . . . . . . . . 9 (((A B A # B) 𝑠 = 0) → ((A = (A + (i · 𝑠)) B = (𝑡 + (i · u))) ↔ (A = (A + (i · 0)) B = (𝑡 + (i · u)))))
8580breq1d 3765 . . . . . . . . . 10 (((A B A # B) 𝑠 = 0) → (𝑠 # u ↔ 0 # u))
8685orbi2d 703 . . . . . . . . 9 (((A B A # B) 𝑠 = 0) → ((A # 𝑡 𝑠 # u) ↔ (A # 𝑡 0 # u)))
8784, 86anbi12d 442 . . . . . . . 8 (((A B A # B) 𝑠 = 0) → (((A = (A + (i · 𝑠)) B = (𝑡 + (i · u))) (A # 𝑡 𝑠 # u)) ↔ ((A = (A + (i · 0)) B = (𝑡 + (i · u))) (A # 𝑡 0 # u))))
88872rexbidv 2343 . . . . . . 7 (((A B A # B) 𝑠 = 0) → (𝑡 u ℝ ((A = (A + (i · 𝑠)) B = (𝑡 + (i · u))) (A # 𝑡 𝑠 # u)) ↔ 𝑡 u ℝ ((A = (A + (i · 0)) B = (𝑡 + (i · u))) (A # 𝑡 0 # u))))
8960, 88rspcedv 2654 . . . . . 6 ((A B A # B) → (𝑡 u ℝ ((A = (A + (i · 0)) B = (𝑡 + (i · u))) (A # 𝑡 0 # u)) → 𝑠 𝑡 u ℝ ((A = (A + (i · 𝑠)) B = (𝑡 + (i · u))) (A # 𝑡 𝑠 # u))))
90 simpr 103 . . . . . . . . . . . . 13 (((A B A # B) 𝑟 = A) → 𝑟 = A)
9190oveq1d 5470 . . . . . . . . . . . 12 (((A B A # B) 𝑟 = A) → (𝑟 + (i · 𝑠)) = (A + (i · 𝑠)))
9291eqeq2d 2048 . . . . . . . . . . 11 (((A B A # B) 𝑟 = A) → (A = (𝑟 + (i · 𝑠)) ↔ A = (A + (i · 𝑠))))
9392anbi1d 438 . . . . . . . . . 10 (((A B A # B) 𝑟 = A) → ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) ↔ (A = (A + (i · 𝑠)) B = (𝑡 + (i · u)))))
9490breq1d 3765 . . . . . . . . . . 11 (((A B A # B) 𝑟 = A) → (𝑟 # 𝑡A # 𝑡))
9594orbi1d 704 . . . . . . . . . 10 (((A B A # B) 𝑟 = A) → ((𝑟 # 𝑡 𝑠 # u) ↔ (A # 𝑡 𝑠 # u)))
9693, 95anbi12d 442 . . . . . . . . 9 (((A B A # B) 𝑟 = A) → (((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) ↔ ((A = (A + (i · 𝑠)) B = (𝑡 + (i · u))) (A # 𝑡 𝑠 # u))))
9796rexbidv 2321 . . . . . . . 8 (((A B A # B) 𝑟 = A) → (u ℝ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) ↔ u ℝ ((A = (A + (i · 𝑠)) B = (𝑡 + (i · u))) (A # 𝑡 𝑠 # u))))
98972rexbidv 2343 . . . . . . 7 (((A B A # B) 𝑟 = A) → (𝑠 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u)) ↔ 𝑠 𝑡 u ℝ ((A = (A + (i · 𝑠)) B = (𝑡 + (i · u))) (A # 𝑡 𝑠 # u))))
9947, 98rspcedv 2654 . . . . . 6 ((A B A # B) → (𝑠 𝑡 u ℝ ((A = (A + (i · 𝑠)) B = (𝑡 + (i · u))) (A # 𝑡 𝑠 # u)) → 𝑟 𝑠 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))))
10079, 89, 993syld 51 . . . . 5 ((A B A # B) → (((A = (A + (i · 0)) B = (B + (i · 0))) (A # B 0 # 0)) → 𝑟 𝑠 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))))
101123adant3 923 . . . . 5 ((A B A # B) → (A # B𝑟 𝑠 𝑡 u ℝ ((A = (𝑟 + (i · 𝑠)) B = (𝑡 + (i · u))) (𝑟 # 𝑡 𝑠 # u))))
102100, 101sylibrd 158 . . . 4 ((A B A # B) → (((A = (A + (i · 0)) B = (B + (i · 0))) (A # B 0 # 0)) → A # B))
10359, 102mpd 13 . . 3 ((A B A # B) → A # B)
1041033expia 1105 . 2 ((A B ℝ) → (A # BA # B))
10543, 104impbid 120 1 ((A B ℝ) → (A # BA # B))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ↔ wb 98   ∨ wo 628   ∧ w3a 884   = wceq 1242   ∈ wcel 1390  ∃wrex 2301   class class class wbr 3755  (class class class)co 5455  ℝcr 6710  0cc0 6711  ici 6713   + caddc 6714   · cmul 6716   #ℝ creap 7358   # cap 7365 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-coll 3863  ax-sep 3866  ax-nul 3874  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220  ax-iinf 4254  ax-cnex 6774  ax-resscn 6775  ax-1cn 6776  ax-1re 6777  ax-icn 6778  ax-addcl 6779  ax-addrcl 6780  ax-mulcl 6781  ax-mulrcl 6782  ax-addcom 6783  ax-mulcom 6784  ax-addass 6785  ax-mulass 6786  ax-distr 6787  ax-i2m1 6788  ax-1rid 6790  ax-0id 6791  ax-rnegex 6792  ax-precex 6793  ax-cnre 6794  ax-pre-ltirr 6795  ax-pre-lttrn 6797  ax-pre-apti 6798  ax-pre-ltadd 6799  ax-pre-mulgt0 6800 This theorem depends on definitions:  df-bi 110  df-dc 742  df-3or 885  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-nel 2204  df-ral 2305  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-int 3607  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-tr 3846  df-eprel 4017  df-id 4021  df-po 4024  df-iso 4025  df-iord 4069  df-on 4071  df-suc 4074  df-iom 4257  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852  df-fv 4853  df-riota 5411  df-ov 5458  df-oprab 5459  df-mpt2 5460  df-1st 5709  df-2nd 5710  df-recs 5861  df-irdg 5897  df-1o 5940  df-2o 5941  df-oadd 5944  df-omul 5945  df-er 6042  df-ec 6044  df-qs 6048  df-ni 6288  df-pli 6289  df-mi 6290  df-lti 6291  df-plpq 6328  df-mpq 6329  df-enq 6331  df-nqqs 6332  df-plqqs 6333  df-mqqs 6334  df-1nqqs 6335  df-rq 6336  df-ltnqqs 6337  df-enq0 6407  df-nq0 6408  df-0nq0 6409  df-plq0 6410  df-mq0 6411  df-inp 6449  df-i1p 6450  df-iplp 6451  df-iltp 6453  df-enr 6654  df-nr 6655  df-ltr 6658  df-0r 6659  df-1r 6660  df-0 6718  df-1 6719  df-r 6721  df-lt 6724  df-pnf 6859  df-mnf 6860  df-ltxr 6862  df-sub 6981  df-neg 6982  df-reap 7359  df-ap 7366 This theorem is referenced by:  reaplt  7372  apreim  7387  apirr  7389  apti  7406  recexap  7416  rerecclap  7488
 Copyright terms: Public domain W3C validator