HomeHome Intuitionistic Logic Explorer
Theorem List (p. 76 of 95)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7501-7600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdivmulapzi 7501 Relationship between division and multiplication. (Contributed by Jim Kingdon, 28-Feb-2020.)
A     &   B     &   𝐶        (B # 0 → ((A / B) = 𝐶 ↔ (B · 𝐶) = A))
 
Theoremdivdirapzi 7502 Distribution of division over addition. (Contributed by Jim Kingdon, 28-Feb-2020.)
A     &   B     &   𝐶        (𝐶 # 0 → ((A + B) / 𝐶) = ((A / 𝐶) + (B / 𝐶)))
 
Theoremdivdiv23apzi 7503 Swap denominators in a division. (Contributed by Jim Kingdon, 28-Feb-2020.)
A     &   B     &   𝐶        ((B # 0 𝐶 # 0) → ((A / B) / 𝐶) = ((A / 𝐶) / B))
 
Theoremdivmulapi 7504 Relationship between division and multiplication. (Contributed by Jim Kingdon, 29-Feb-2020.)
A     &   B     &   𝐶     &   B # 0       ((A / B) = 𝐶 ↔ (B · 𝐶) = A)
 
Theoremdivdiv32api 7505 Swap denominators in a division. (Contributed by Jim Kingdon, 29-Feb-2020.)
A     &   B     &   𝐶     &   B # 0    &   𝐶 # 0       ((A / B) / 𝐶) = ((A / 𝐶) / B)
 
Theoremdivassapi 7506 An associative law for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   B     &   𝐶     &   𝐶 # 0       ((A · B) / 𝐶) = (A · (B / 𝐶))
 
Theoremdivdirapi 7507 Distribution of division over addition. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   B     &   𝐶     &   𝐶 # 0       ((A + B) / 𝐶) = ((A / 𝐶) + (B / 𝐶))
 
Theoremdiv23api 7508 A commutative/associative law for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   B     &   𝐶     &   𝐶 # 0       ((A · B) / 𝐶) = ((A / 𝐶) · B)
 
Theoremdiv11api 7509 One-to-one relationship for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   B     &   𝐶     &   𝐶 # 0       ((A / 𝐶) = (B / 𝐶) ↔ A = B)
 
Theoremdivmuldivapi 7510 Multiplication of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   B     &   𝐶     &   𝐷     &   B # 0    &   𝐷 # 0       ((A / B) · (𝐶 / 𝐷)) = ((A · 𝐶) / (B · 𝐷))
 
Theoremdivmul13api 7511 Swap denominators of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   B     &   𝐶     &   𝐷     &   B # 0    &   𝐷 # 0       ((A / B) · (𝐶 / 𝐷)) = ((𝐶 / B) · (A / 𝐷))
 
Theoremdivadddivapi 7512 Addition of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   B     &   𝐶     &   𝐷     &   B # 0    &   𝐷 # 0       ((A / B) + (𝐶 / 𝐷)) = (((A · 𝐷) + (𝐶 · B)) / (B · 𝐷))
 
Theoremdivdivdivapi 7513 Division of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   B     &   𝐶     &   𝐷     &   B # 0    &   𝐷 # 0    &   𝐶 # 0       ((A / B) / (𝐶 / 𝐷)) = ((A · 𝐷) / (B · 𝐶))
 
Theoremrerecclapzi 7514 Closure law for reciprocal. (Contributed by Jim Kingdon, 9-Mar-2020.)
A        (A # 0 → (1 / A) ℝ)
 
Theoremrerecclapi 7515 Closure law for reciprocal. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   A # 0       (1 / A)
 
Theoremredivclapzi 7516 Closure law for division of reals. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   B        (B # 0 → (A / B) ℝ)
 
Theoremredivclapi 7517 Closure law for division of reals. (Contributed by Jim Kingdon, 9-Mar-2020.)
A     &   B     &   B # 0       (A / B)
 
Theoremdiv1d 7518 A number divided by 1 is itself. (Contributed by Mario Carneiro, 27-May-2016.)
(φA ℂ)       (φ → (A / 1) = A)
 
Theoremrecclapd 7519 Closure law for reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φA # 0)       (φ → (1 / A) ℂ)
 
Theoremrecap0d 7520 The reciprocal of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φA # 0)       (φ → (1 / A) # 0)
 
Theoremrecidapd 7521 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φA # 0)       (φ → (A · (1 / A)) = 1)
 
Theoremrecidap2d 7522 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φA # 0)       (φ → ((1 / A) · A) = 1)
 
Theoremrecrecapd 7523 A number is equal to the reciprocal of its reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φA # 0)       (φ → (1 / (1 / A)) = A)
 
Theoremdividapd 7524 A number divided by itself is one. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φA # 0)       (φ → (A / A) = 1)
 
Theoremdiv0apd 7525 Division into zero is zero. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φA # 0)       (φ → (0 / A) = 0)
 
Theoremapmul1 7526 Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
((A B (𝐶 𝐶 # 0)) → (A # B ↔ (A · 𝐶) # (B · 𝐶)))
 
Theoremdivclapd 7527 Closure law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → (A / B) ℂ)
 
Theoremdivcanap1d 7528 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → ((A / B) · B) = A)
 
Theoremdivcanap2d 7529 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → (B · (A / B)) = A)
 
Theoremdivrecapd 7530 Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by Jim Kingdon, 29-Feb-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → (A / B) = (A · (1 / B)))
 
Theoremdivrecap2d 7531 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 29-Feb-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → (A / B) = ((1 / B) · A))
 
Theoremdivcanap3d 7532 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → ((B · A) / B) = A)
 
Theoremdivcanap4d 7533 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → ((A · B) / B) = A)
 
Theoremdiveqap0d 7534 If a ratio is zero, the numerator is zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)    &   (φ → (A / B) = 0)       (φA = 0)
 
Theoremdiveqap1d 7535 Equality in terms of unit ratio. (Contributed by Jim Kingdon, 19-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)    &   (φ → (A / B) = 1)       (φA = B)
 
Theoremdiveqap1ad 7536 The quotient of two complex numbers is one iff they are equal. Deduction form of diveqap1 7444. Generalization of diveqap1d 7535. (Contributed by Jim Kingdon, 19-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → ((A / B) = 1 ↔ A = B))
 
Theoremdiveqap0ad 7537 A fraction of complex numbers is zero iff its numerator is. Deduction form of diveqap0 7423. (Contributed by Jim Kingdon, 19-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → ((A / B) = 0 ↔ A = 0))
 
Theoremdivap1d 7538 If two complex numbers are apart, their quotient is apart from one. (Contributed by Jim Kingdon, 20-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)    &   (φA # B)       (φ → (A / B) # 1)
 
Theoremdivap0bd 7539 A ratio is zero iff the numerator is zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → (A # 0 ↔ (A / B) # 0))
 
Theoremdivnegapd 7540 Move negative sign inside of a division. (Contributed by Jim Kingdon, 19-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → -(A / B) = (-A / B))
 
Theoremdivneg2apd 7541 Move negative sign inside of a division. (Contributed by Jim Kingdon, 19-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → -(A / B) = (A / -B))
 
Theoremdiv2negapd 7542 Quotient of two negatives. (Contributed by Jim Kingdon, 19-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φB # 0)       (φ → (-A / -B) = (A / B))
 
Theoremdivap0d 7543 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φA # 0)    &   (φB # 0)       (φ → (A / B) # 0)
 
Theoremrecdivapd 7544 The reciprocal of a ratio. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φA # 0)    &   (φB # 0)       (φ → (1 / (A / B)) = (B / A))
 
Theoremrecdivap2d 7545 Division into a reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φA # 0)    &   (φB # 0)       (φ → ((1 / A) / B) = (1 / (A · B)))
 
Theoremdivcanap6d 7546 Cancellation of inverted fractions. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φA # 0)    &   (φB # 0)       (φ → ((A / B) · (B / A)) = 1)
 
Theoremddcanapd 7547 Cancellation in a double division. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φA # 0)    &   (φB # 0)       (φ → (A / (A / B)) = B)
 
Theoremrec11apd 7548 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 3-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φA # 0)    &   (φB # 0)    &   (φ → (1 / A) = (1 / B))       (φA = B)
 
Theoremdivmulapd 7549 Relationship between division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)       (φ → ((A / B) = 𝐶 ↔ (B · 𝐶) = A))
 
Theoremdiv32apd 7550 A commutative/associative law for division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)       (φ → ((A / B) · 𝐶) = (A · (𝐶 / B)))
 
Theoremdiv13apd 7551 A commutative/associative law for division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)       (φ → ((A / B) · 𝐶) = ((𝐶 / B) · A))
 
Theoremdivdiv32apd 7552 Swap denominators in a division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)    &   (φ𝐶 # 0)       (φ → ((A / B) / 𝐶) = ((A / 𝐶) / B))
 
Theoremdivcanap5d 7553 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)    &   (φ𝐶 # 0)       (φ → ((𝐶 · A) / (𝐶 · B)) = (A / B))
 
Theoremdivcanap5rd 7554 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)    &   (φ𝐶 # 0)       (φ → ((A · 𝐶) / (B · 𝐶)) = (A / B))
 
Theoremdivcanap7d 7555 Cancel equal divisors in a division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)    &   (φ𝐶 # 0)       (φ → ((A / 𝐶) / (B / 𝐶)) = (A / B))
 
Theoremdmdcanapd 7556 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)    &   (φ𝐶 # 0)       (φ → ((B / 𝐶) · (A / B)) = (A / 𝐶))
 
Theoremdmdcanap2d 7557 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)    &   (φ𝐶 # 0)       (φ → ((A / B) · (B / 𝐶)) = (A / 𝐶))
 
Theoremdivdivap1d 7558 Division into a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)    &   (φ𝐶 # 0)       (φ → ((A / B) / 𝐶) = (A / (B · 𝐶)))
 
Theoremdivdivap2d 7559 Division by a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φB # 0)    &   (φ𝐶 # 0)       (φ → (A / (B / 𝐶)) = ((A · 𝐶) / B))
 
Theoremdivmulap2d 7560 Relationship between division and multiplication. (Contributed by Jim Kingdon, 2-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φ𝐶 # 0)       (φ → ((A / 𝐶) = BA = (𝐶 · B)))
 
Theoremdivmulap3d 7561 Relationship between division and multiplication. (Contributed by Jim Kingdon, 2-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φ𝐶 # 0)       (φ → ((A / 𝐶) = BA = (B · 𝐶)))
 
Theoremdivassapd 7562 An associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φ𝐶 # 0)       (φ → ((A · B) / 𝐶) = (A · (B / 𝐶)))
 
Theoremdiv12apd 7563 A commutative/associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φ𝐶 # 0)       (φ → (A · (B / 𝐶)) = (B · (A / 𝐶)))
 
Theoremdiv23apd 7564 A commutative/associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φ𝐶 # 0)       (φ → ((A · B) / 𝐶) = ((A / 𝐶) · B))
 
Theoremdivdirapd 7565 Distribution of division over addition. (Contributed by Jim Kingdon, 2-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φ𝐶 # 0)       (φ → ((A + B) / 𝐶) = ((A / 𝐶) + (B / 𝐶)))
 
Theoremdivsubdirapd 7566 Distribution of division over subtraction. (Contributed by Jim Kingdon, 2-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φ𝐶 # 0)       (φ → ((AB) / 𝐶) = ((A / 𝐶) − (B / 𝐶)))
 
Theoremdiv11apd 7567 One-to-one relationship for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φ𝐶 ℂ)    &   (φ𝐶 # 0)    &   (φ → (A / 𝐶) = (B / 𝐶))       (φA = B)
 
Theoremrerecclapd 7568 Closure law for reciprocal. (Contributed by Jim Kingdon, 29-Feb-2020.)
(φA ℝ)    &   (φA # 0)       (φ → (1 / A) ℝ)
 
Theoremredivclapd 7569 Closure law for division of reals. (Contributed by Jim Kingdon, 29-Feb-2020.)
(φA ℝ)    &   (φB ℝ)    &   (φB # 0)       (φ → (A / B) ℝ)
 
Theoremmvllmulapd 7570 Move LHS left multiplication to RHS. (Contributed by Jim Kingdon, 10-Jun-2020.)
(φA ℂ)    &   (φB ℂ)    &   (φA # 0)    &   (φ → (A · B) = 𝐶)       (φB = (𝐶 / A))
 
3.3.9  Ordering on reals (cont.)
 
Theoremltp1 7571 A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
(A ℝ → A < (A + 1))
 
Theoremlep1 7572 A number is less than or equal to itself plus 1. (Contributed by NM, 5-Jan-2006.)
(A ℝ → A ≤ (A + 1))
 
Theoremltm1 7573 A number minus 1 is less than itself. (Contributed by NM, 9-Apr-2006.)
(A ℝ → (A − 1) < A)
 
Theoremlem1 7574 A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 2-Oct-2015.)
(A ℝ → (A − 1) ≤ A)
 
Theoremletrp1 7575 A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005.)
((A B AB) → A ≤ (B + 1))
 
Theoremp1le 7576 A transitive property of plus 1 and 'less than or equal'. (Contributed by NM, 16-Aug-2005.)
((A B (A + 1) ≤ B) → AB)
 
Theoremrecgt0 7577 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
((A 0 < A) → 0 < (1 / A))
 
Theoremprodgt0gt0 7578 Infer that a multiplicand is positive from a positive multiplier and positive product. See prodgt0 7579 for the same theorem with 0 < A replaced by the weaker condition 0 ≤ A. (Contributed by Jim Kingdon, 29-Feb-2020.)
(((A B ℝ) (0 < A 0 < (A · B))) → 0 < B)
 
Theoremprodgt0 7579 Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(((A B ℝ) (0 ≤ A 0 < (A · B))) → 0 < B)
 
Theoremprodgt02 7580 Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005.)
(((A B ℝ) (0 ≤ B 0 < (A · B))) → 0 < A)
 
Theoremprodge0 7581 Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(((A B ℝ) (0 < A 0 ≤ (A · B))) → 0 ≤ B)
 
Theoremprodge02 7582 Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005.)
(((A B ℝ) (0 < B 0 ≤ (A · B))) → 0 ≤ A)
 
Theoremltmul2 7583 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
((A B (𝐶 0 < 𝐶)) → (A < B ↔ (𝐶 · A) < (𝐶 · B)))
 
Theoremlemul2 7584 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.)
((A B (𝐶 0 < 𝐶)) → (AB ↔ (𝐶 · A) ≤ (𝐶 · B)))
 
Theoremlemul1a 7585 Multiplication of both sides of 'less than or equal to' by a nonnegative number. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 21-Feb-2005.)
(((A B (𝐶 0 ≤ 𝐶)) AB) → (A · 𝐶) ≤ (B · 𝐶))
 
Theoremlemul2a 7586 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
(((A B (𝐶 0 ≤ 𝐶)) AB) → (𝐶 · A) ≤ (𝐶 · B))
 
Theoremltmul12a 7587 Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
((((A B ℝ) (0 ≤ A A < B)) ((𝐶 𝐷 ℝ) (0 ≤ 𝐶 𝐶 < 𝐷))) → (A · 𝐶) < (B · 𝐷))
 
Theoremlemul12b 7588 Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
((((A 0 ≤ A) B ℝ) (𝐶 (𝐷 0 ≤ 𝐷))) → ((AB 𝐶𝐷) → (A · 𝐶) ≤ (B · 𝐷)))
 
Theoremlemul12a 7589 Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
((((A 0 ≤ A) B ℝ) ((𝐶 0 ≤ 𝐶) 𝐷 ℝ)) → ((AB 𝐶𝐷) → (A · 𝐶) ≤ (B · 𝐷)))
 
Theoremmulgt1 7590 The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.)
(((A B ℝ) (1 < A 1 < B)) → 1 < (A · B))
 
Theoremltmulgt11 7591 Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005.)
((A B 0 < A) → (1 < BA < (A · B)))
 
Theoremltmulgt12 7592 Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005.)
((A B 0 < A) → (1 < BA < (B · A)))
 
Theoremlemulge11 7593 Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005.)
(((A B ℝ) (0 ≤ A 1 ≤ B)) → A ≤ (A · B))
 
Theoremlemulge12 7594 Multiplication by a number greater than or equal to 1. (Contributed by Paul Chapman, 21-Mar-2011.)
(((A B ℝ) (0 ≤ A 1 ≤ B)) → A ≤ (B · A))
 
Theoremltdiv1 7595 Division of both sides of 'less than' by a positive number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.)
((A B (𝐶 0 < 𝐶)) → (A < B ↔ (A / 𝐶) < (B / 𝐶)))
 
Theoremlediv1 7596 Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004.)
((A B (𝐶 0 < 𝐶)) → (AB ↔ (A / 𝐶) ≤ (B / 𝐶)))
 
Theoremgt0div 7597 Division of a positive number by a positive number. (Contributed by NM, 28-Sep-2005.)
((A B 0 < B) → (0 < A ↔ 0 < (A / B)))
 
Theoremge0div 7598 Division of a nonnegative number by a positive number. (Contributed by NM, 28-Sep-2005.)
((A B 0 < B) → (0 ≤ A ↔ 0 ≤ (A / B)))
 
Theoremdivgt0 7599 The ratio of two positive numbers is positive. (Contributed by NM, 12-Oct-1999.)
(((A 0 < A) (B 0 < B)) → 0 < (A / B))
 
Theoremdivge0 7600 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.)
(((A 0 ≤ A) (B 0 < B)) → 0 ≤ (A / B))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9427
  Copyright terms: Public domain < Previous  Next >