HomeHome Intuitionistic Logic Explorer
Theorem List (p. 71 of 95)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7001-7100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnegeq 7001 Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
(A = B → -A = -B)
 
Theoremnegeqi 7002 Equality inference for negatives. (Contributed by NM, 14-Feb-1995.)
A = B       -A = -B
 
Theoremnegeqd 7003 Equality deduction for negatives. (Contributed by NM, 14-May-1999.)
(φA = B)       (φ → -A = -B)
 
Theoremnfnegd 7004 Deduction version of nfneg 7005. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
(φxA)       (φx-A)
 
Theoremnfneg 7005 Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
xA       x-A
 
Theoremcsbnegg 7006 Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(A 𝑉A / x-B = -A / xB)
 
Theoremsubcl 7007 Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.)
((A B ℂ) → (AB) ℂ)
 
Theoremnegcl 7008 Closure law for negative. (Contributed by NM, 6-Aug-2003.)
(A ℂ → -A ℂ)
 
Theoremnegicn 7009 -i is a complex number (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
-i
 
Theoremsubf 7010 Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
− :(ℂ × ℂ)⟶ℂ
 
Theoremsubadd 7011 Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
((A B 𝐶 ℂ) → ((AB) = 𝐶 ↔ (B + 𝐶) = A))
 
Theoremsubadd2 7012 Relationship between subtraction and addition. (Contributed by Scott Fenton, 5-Jul-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((A B 𝐶 ℂ) → ((AB) = 𝐶 ↔ (𝐶 + B) = A))
 
Theoremsubsub23 7013 Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007.)
((A B 𝐶 ℂ) → ((AB) = 𝐶 ↔ (A𝐶) = B))
 
Theorempncan 7014 Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
((A B ℂ) → ((A + B) − B) = A)
 
Theorempncan2 7015 Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
((A B ℂ) → ((A + B) − A) = B)
 
Theorempncan3 7016 Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.)
((A B ℂ) → (A + (BA)) = B)
 
Theoremnpcan 7017 Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
((A B ℂ) → ((AB) + B) = A)
 
Theoremaddsubass 7018 Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.)
((A B 𝐶 ℂ) → ((A + B) − 𝐶) = (A + (B𝐶)))
 
Theoremaddsub 7019 Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((A B 𝐶 ℂ) → ((A + B) − 𝐶) = ((A𝐶) + B))
 
Theoremsubadd23 7020 Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007.)
((A B 𝐶 ℂ) → ((AB) + 𝐶) = (A + (𝐶B)))
 
Theoremaddsub12 7021 Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005.)
((A B 𝐶 ℂ) → (A + (B𝐶)) = (B + (A𝐶)))
 
Theorem2addsub 7022 Law for subtraction and addition. (Contributed by NM, 20-Nov-2005.)
(((A B ℂ) (𝐶 𝐷 ℂ)) → (((A + B) + 𝐶) − 𝐷) = (((A + 𝐶) − 𝐷) + B))
 
Theoremaddsubeq4 7023 Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
(((A B ℂ) (𝐶 𝐷 ℂ)) → ((A + B) = (𝐶 + 𝐷) ↔ (𝐶A) = (B𝐷)))
 
Theorempncan3oi 7024 Subtraction and addition of equals. Almost but not exactly the same as pncan3i 7084 and pncan 7014, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 7119. (Contributed by David A. Wheeler, 11-Oct-2018.)
A     &   B        ((A + B) − B) = A
 
Theoremmvlladdi 7025 Move LHS left addition to RHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
A     &   B     &   (A + B) = 𝐶       B = (𝐶A)
 
Theoremsubid 7026 Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(A ℂ → (AA) = 0)
 
Theoremsubid1 7027 Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
(A ℂ → (A − 0) = A)
 
Theoremnpncan 7028 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
((A B 𝐶 ℂ) → ((AB) + (B𝐶)) = (A𝐶))
 
Theoremnppcan 7029 Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.)
((A B 𝐶 ℂ) → (((AB) + 𝐶) + B) = (A + 𝐶))
 
Theoremnnpcan 7030 Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
((A B 𝐶 ℂ) → (((AB) − 𝐶) + B) = (A𝐶))
 
Theoremnppcan3 7031 Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015.)
((A B 𝐶 ℂ) → ((AB) + (𝐶 + B)) = (A + 𝐶))
 
Theoremsubcan2 7032 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
((A B 𝐶 ℂ) → ((A𝐶) = (B𝐶) ↔ A = B))
 
Theoremsubeq0 7033 If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
((A B ℂ) → ((AB) = 0 ↔ A = B))
 
Theoremnpncan2 7034 Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013.)
((A B ℂ) → ((AB) + (BA)) = 0)
 
Theoremsubsub2 7035 Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((A B 𝐶 ℂ) → (A − (B𝐶)) = (A + (𝐶B)))
 
Theoremnncan 7036 Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((A B ℂ) → (A − (AB)) = B)
 
Theoremsubsub 7037 Law for double subtraction. (Contributed by NM, 13-May-2004.)
((A B 𝐶 ℂ) → (A − (B𝐶)) = ((AB) + 𝐶))
 
Theoremnppcan2 7038 Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.)
((A B 𝐶 ℂ) → ((A − (B + 𝐶)) + 𝐶) = (AB))
 
Theoremsubsub3 7039 Law for double subtraction. (Contributed by NM, 27-Jul-2005.)
((A B 𝐶 ℂ) → (A − (B𝐶)) = ((A + 𝐶) − B))
 
Theoremsubsub4 7040 Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((A B 𝐶 ℂ) → ((AB) − 𝐶) = (A − (B + 𝐶)))
 
Theoremsub32 7041 Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.)
((A B 𝐶 ℂ) → ((AB) − 𝐶) = ((A𝐶) − B))
 
Theoremnnncan 7042 Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.)
((A B 𝐶 ℂ) → ((A − (B𝐶)) − 𝐶) = (AB))
 
Theoremnnncan1 7043 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((A B 𝐶 ℂ) → ((AB) − (A𝐶)) = (𝐶B))
 
Theoremnnncan2 7044 Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.)
((A B 𝐶 ℂ) → ((A𝐶) − (B𝐶)) = (AB))
 
Theoremnpncan3 7045 Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((A B 𝐶 ℂ) → ((AB) + (𝐶A)) = (𝐶B))
 
Theorempnpcan 7046 Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((A B 𝐶 ℂ) → ((A + B) − (A + 𝐶)) = (B𝐶))
 
Theorempnpcan2 7047 Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.)
((A B 𝐶 ℂ) → ((A + 𝐶) − (B + 𝐶)) = (AB))
 
Theorempnncan 7048 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((A B 𝐶 ℂ) → ((A + B) − (A𝐶)) = (B + 𝐶))
 
Theoremppncan 7049 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.)
((A B 𝐶 ℂ) → ((A + B) + (𝐶B)) = (A + 𝐶))
 
Theoremaddsub4 7050 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.)
(((A B ℂ) (𝐶 𝐷 ℂ)) → ((A + B) − (𝐶 + 𝐷)) = ((A𝐶) + (B𝐷)))
 
Theoremsubadd4 7051 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006.)
(((A B ℂ) (𝐶 𝐷 ℂ)) → ((AB) − (𝐶𝐷)) = ((A + 𝐷) − (B + 𝐶)))
 
Theoremsub4 7052 Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.)
(((A B ℂ) (𝐶 𝐷 ℂ)) → ((AB) − (𝐶𝐷)) = ((A𝐶) − (B𝐷)))
 
Theoremneg0 7053 Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.)
-0 = 0
 
Theoremnegid 7054 Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.)
(A ℂ → (A + -A) = 0)
 
Theoremnegsub 7055 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((A B ℂ) → (A + -B) = (AB))
 
Theoremsubneg 7056 Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
((A B ℂ) → (A − -B) = (A + B))
 
Theoremnegneg 7057 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.)
(A ℂ → --A = A)
 
Theoremneg11 7058 Negative is one-to-one. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((A B ℂ) → (-A = -BA = B))
 
Theoremnegcon1 7059 Negative contraposition law. (Contributed by NM, 9-May-2004.)
((A B ℂ) → (-A = B ↔ -B = A))
 
Theoremnegcon2 7060 Negative contraposition law. (Contributed by NM, 14-Nov-2004.)
((A B ℂ) → (A = -BB = -A))
 
Theoremnegeq0 7061 A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(A ℂ → (A = 0 ↔ -A = 0))
 
Theoremsubcan 7062 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((A B 𝐶 ℂ) → ((AB) = (A𝐶) ↔ B = 𝐶))
 
Theoremnegsubdi 7063 Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((A B ℂ) → -(AB) = (-A + B))
 
Theoremnegdi 7064 Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((A B ℂ) → -(A + B) = (-A + -B))
 
Theoremnegdi2 7065 Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.)
((A B ℂ) → -(A + B) = (-AB))
 
Theoremnegsubdi2 7066 Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.)
((A B ℂ) → -(AB) = (BA))
 
Theoremneg2sub 7067 Relationship between subtraction and negative. (Contributed by Paul Chapman, 8-Oct-2007.)
((A B ℂ) → (-A − -B) = (BA))
 
Theoremrenegcl 7068 Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
(A ℝ → -A ℝ)
 
Theoremrenegcli 7069 Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 7068 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
A        -A
 
Theoremresubcli 7070 Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.)
A     &   B        (AB)
 
Theoremresubcl 7071 Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.)
((A B ℝ) → (AB) ℝ)
 
Theoremnegreb 7072 The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
(A ℂ → (-A ℝ ↔ A ℝ))
 
Theorempeano2cnm 7073 "Reverse" second Peano postulate analog for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
(𝑁 ℂ → (𝑁 − 1) ℂ)
 
Theorempeano2rem 7074 "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.)
(𝑁 ℝ → (𝑁 − 1) ℝ)
 
Theoremnegcli 7075 Closure law for negative. (Contributed by NM, 26-Nov-1994.)
A        -A
 
Theoremnegidi 7076 Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.)
A        (A + -A) = 0
 
Theoremnegnegi 7077 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
A        --A = A
 
Theoremsubidi 7078 Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.)
A        (AA) = 0
 
Theoremsubid1i 7079 Identity law for subtraction. (Contributed by NM, 29-May-1999.)
A        (A − 0) = A
 
Theoremnegne0bi 7080 A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.)
A        (A ≠ 0 ↔ -A ≠ 0)
 
Theoremnegrebi 7081 The negative of a real is real. (Contributed by NM, 11-Aug-1999.)
A        (-A ℝ ↔ A ℝ)
 
Theoremnegne0i 7082 The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004.)
A     &   A ≠ 0       -A ≠ 0
 
Theoremsubcli 7083 Closure law for subtraction. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
A     &   B        (AB)
 
Theorempncan3i 7084 Subtraction and addition of equals. (Contributed by NM, 26-Nov-1994.)
A     &   B        (A + (BA)) = B
 
Theoremnegsubi 7085 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
A     &   B        (A + -B) = (AB)
 
Theoremsubnegi 7086 Relationship between subtraction and negative. (Contributed by NM, 1-Dec-2005.)
A     &   B        (A − -B) = (A + B)
 
Theoremsubeq0i 7087 If the difference between two numbers is zero, they are equal. (Contributed by NM, 8-May-1999.)
A     &   B        ((AB) = 0 ↔ A = B)
 
Theoremneg11i 7088 Negative is one-to-one. (Contributed by NM, 1-Aug-1999.)
A     &   B        (-A = -BA = B)
 
Theoremnegcon1i 7089 Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
A     &   B        (-A = B ↔ -B = A)
 
Theoremnegcon2i 7090 Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
A     &   B        (A = -BB = -A)
 
Theoremnegdii 7091 Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
A     &   B        -(A + B) = (-A + -B)
 
Theoremnegsubdii 7092 Distribution of negative over subtraction. (Contributed by NM, 6-Aug-1999.)
A     &   B        -(AB) = (-A + B)
 
Theoremnegsubdi2i 7093 Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999.)
A     &   B        -(AB) = (BA)
 
Theoremsubaddi 7094 Relationship between subtraction and addition. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
A     &   B     &   𝐶        ((AB) = 𝐶 ↔ (B + 𝐶) = A)
 
Theoremsubadd2i 7095 Relationship between subtraction and addition. (Contributed by NM, 15-Dec-2006.)
A     &   B     &   𝐶        ((AB) = 𝐶 ↔ (𝐶 + B) = A)
 
Theoremsubaddrii 7096 Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.)
A     &   B     &   𝐶     &   (B + 𝐶) = A       (AB) = 𝐶
 
Theoremsubsub23i 7097 Swap subtrahend and result of subtraction. (Contributed by NM, 7-Oct-1999.)
A     &   B     &   𝐶        ((AB) = 𝐶 ↔ (A𝐶) = B)
 
Theoremaddsubassi 7098 Associative-type law for subtraction and addition. (Contributed by NM, 16-Sep-1999.)
A     &   B     &   𝐶        ((A + B) − 𝐶) = (A + (B𝐶))
 
Theoremaddsubi 7099 Law for subtraction and addition. (Contributed by NM, 6-Aug-2003.)
A     &   B     &   𝐶        ((A + B) − 𝐶) = ((A𝐶) + B)
 
Theoremsubcani 7100 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
A     &   B     &   𝐶        ((AB) = (A𝐶) ↔ B = 𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9457
  Copyright terms: Public domain < Previous  Next >