Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lerelxr | GIF version |
Description: 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
lerelxr | ⊢ ≤ ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-le 7066 | . 2 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
2 | difss 3070 | . 2 ⊢ ((ℝ* × ℝ*) ∖ ◡ < ) ⊆ (ℝ* × ℝ*) | |
3 | 1, 2 | eqsstri 2975 | 1 ⊢ ≤ ⊆ (ℝ* × ℝ*) |
Colors of variables: wff set class |
Syntax hints: ∖ cdif 2914 ⊆ wss 2917 × cxp 4343 ◡ccnv 4344 ℝ*cxr 7059 < clt 7060 ≤ cle 7061 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-le 7066 |
This theorem is referenced by: lerel 7083 |
Copyright terms: Public domain | W3C validator |