HomeHome Intuitionistic Logic Explorer
Theorem List (p. 17 of 102)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1601-1700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelequ2 1601 An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
 
Theoremax11i 1602 Inference that has ax-11 1397 (without 𝑦) as its conclusion and doesn't require ax-10 1396, ax-11 1397, or ax-12 1402 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. Proof similar to Lemma 16 of [Tarski] p. 70. (Contributed by NM, 20-May-2008.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝜓 → ∀𝑥𝜓)       (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
1.3.9  Axioms ax-10 and ax-11
 
Theoremax10o 1603 Show that ax-10o 1604 can be derived from ax-10 1396. An open problem is whether this theorem can be derived from ax-10 1396 and the others when ax-11 1397 is replaced with ax-11o 1704. See theorem ax10 1605 for the rederivation of ax-10 1396 from ax10o 1603.

Normally, ax10o 1603 should be used rather than ax-10o 1604, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.)

(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Axiomax-10o 1604 Axiom ax-10o 1604 ("o" for "old") was the original version of ax-10 1396, before it was discovered (in May 2008) that the shorter ax-10 1396 could replace it. It appears as Axiom scheme C11' in [Megill] p. 448 (p. 16 of the preprint).

This axiom is redundant, as shown by theorem ax10o 1603.

Normally, ax10o 1603 should be used rather than ax-10o 1604, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Theoremax10 1605 Rederivation of ax-10 1396 from original version ax-10o 1604. See theorem ax10o 1603 for the derivation of ax-10o 1604 from ax-10 1396.

This theorem should not be referenced in any proof. Instead, use ax-10 1396 above so that uses of ax-10 1396 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theoremhbae 1606 All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
 
Theoremnfae 1607 All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑧𝑥 𝑥 = 𝑦
 
Theoremhbaes 1608 Rule that applies hbae 1606 to antecedent. (Contributed by NM, 5-Aug-1993.)
(∀𝑧𝑥 𝑥 = 𝑦𝜑)       (∀𝑥 𝑥 = 𝑦𝜑)
 
Theoremhbnae 1609 All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
 
Theoremnfnae 1610 All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑧 ¬ ∀𝑥 𝑥 = 𝑦
 
Theoremhbnaes 1611 Rule that applies hbnae 1609 to antecedent. (Contributed by NM, 5-Aug-1993.)
(∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦𝜑)       (¬ ∀𝑥 𝑥 = 𝑦𝜑)
 
Theoremnaecoms 1612 A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦𝜑)       (¬ ∀𝑦 𝑦 = 𝑥𝜑)
 
Theoremequs4 1613 Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.)
(∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremequsalh 1614 A useful equivalence related to substitution. New proofs should use equsal 1615 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremequsal 1615 A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremequsex 1616 A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremequsexd 1617 Deduction form of equsex 1616. (Contributed by Jim Kingdon, 29-Dec-2017.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
 
Theoremdral1 1618 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
 
Theoremdral2 1619 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))
 
Theoremdrex2 1620 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))
 
Theoremdrnf1 1621 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓))
 
Theoremdrnf2 1622 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
 
Theoremspimth 1623 Closed theorem form of spim 1626. (Contributed by NM, 15-Jan-2008.) (New usage is discouraged.)
(∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
 
Theoremspimt 1624 Closed theorem form of spim 1626. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
 
Theoremspimh 1625 Specialization, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. The spim 1626 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 8-May-2008.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremspim 1626 Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 1626 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremspimeh 1627 Existential introduction, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by NM, 3-Feb-2015.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∃𝑥𝜓)
 
Theoremspimed 1628 Deduction version of spime 1629. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.)
(𝜒 → Ⅎ𝑥𝜑)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜒 → (𝜑 → ∃𝑥𝜓))
 
Theoremspime 1629 Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.)
𝑥𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∃𝑥𝜓)
 
Theoremcbv3 1630 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theoremcbv3h 1631 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.)
(𝜑 → ∀𝑦𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theoremcbv1 1632 Rule used to change bound variables, using implicit substitution. Revised to format hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
 
Theoremcbv1h 1633 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-May-2018.)
(𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (∀𝑥𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
 
Theoremcbv2h 1634 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (∀𝑥𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbv2 1635 Rule used to change bound variables, using implicit substitution. Revised to align format of hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvalh 1636 Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑦𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbval 1637 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvexh 1638 Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Feb-2015.)
(𝜑 → ∀𝑦𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbvex 1639 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremchvar 1640 Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremequvini 1641 A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require 𝑧 to be distinct from 𝑥 and 𝑦 (making the proof longer). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
 
Theoremequveli 1642 A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1641.) (Contributed by NM, 1-Mar-2013.) (Revised by NM, 3-Feb-2015.)
(∀𝑧(𝑧 = 𝑥𝑧 = 𝑦) → 𝑥 = 𝑦)
 
Theoremnfald 1643 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥𝑦𝜓)
 
Theoremnfexd 1644 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 7-Feb-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥𝑦𝜓)
 
1.3.10  Substitution (without distinct variables)
 
Syntaxwsb 1645 Extend wff definition to include proper substitution (read "the wff that results when 𝑦 is properly substituted for 𝑥 in wff 𝜑"). (Contributed by NM, 24-Jan-2006.)
wff [𝑦 / 𝑥]𝜑
 
Definitiondf-sb 1646 Define proper substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). For our notation, we use [𝑦 / 𝑥]𝜑 to mean "the wff that results when 𝑦 is properly substituted for 𝑥 in the wff 𝜑." We can also use [𝑦 / 𝑥]𝜑 in place of the "free for" side condition used in traditional predicate calculus; see, for example, stdpc4 1658.

Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑦) is the wff that results when 𝑦 is properly substituted for 𝑥 in 𝜑(𝑥)." For example, if the original 𝜑(𝑥) is 𝑥 = 𝑦, then 𝜑(𝑦) is 𝑦 = 𝑦, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem.

In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see theorems sbequ 1721, sbcom2 1863 and sbid2v 1872).

Note that our definition is valid even when 𝑥 and 𝑦 are replaced with the same variable, as sbid 1657 shows. We achieve this by having 𝑥 free in the first conjunct and bound in the second. We can also achieve this by using a dummy variable, as the alternate definition dfsb7 1867 shows (which some logicians may prefer because it doesn't mix free and bound variables). Another alternate definition which uses a dummy variable is dfsb7a 1870.

When 𝑥 and 𝑦 are distinct, we can express proper substitution with the simpler expressions of sb5 1767 and sb6 1766.

In classical logic, another possible definition is (𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑) but we do not have an intuitionistic proof that this is equivalent.

There are no restrictions on any of the variables, including what variables may occur in wff 𝜑. (Contributed by NM, 5-Aug-1993.)

([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsbimi 1647 Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.)
(𝜑𝜓)       ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)
 
Theoremsbbii 1648 Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)
 
Theoremsb1 1649 One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb2 1650 One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
 
Theoremsbequ1 1651 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
 
Theoremsbequ2 1652 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
 
Theoremstdpc7 1653 One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 1591.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑦)." Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.)
(𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
 
Theoremsbequ12 1654 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
 
Theoremsbequ12r 1655 An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
(𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
 
Theoremsbequ12a 1656 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑))
 
Theoremsbid 1657 An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 5-Aug-1993.)
([𝑥 / 𝑥]𝜑𝜑)
 
Theoremstdpc4 1658 The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑦 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "𝑥𝜑(𝑥) → 𝜑(𝑦), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥)." Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 5-Aug-1993.)
(∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
 
Theoremsbh 1659 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥]𝜑𝜑)
 
Theoremsbf 1660 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
𝑥𝜑       ([𝑦 / 𝑥]𝜑𝜑)
 
Theoremsbf2 1661 Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.)
([𝑦 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theoremsb6x 1662 Equivalence involving substitution for a variable not free. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremnfs1f 1663 If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       𝑥[𝑦 / 𝑥]𝜑
 
Theoremhbs1f 1664 If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremsbequ5 1665 Substitution does not change an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-Dec-2004.)
([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)
 
Theoremsbequ6 1666 Substitution does not change a distinctor. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 14-May-2005.)
([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
 
Theoremsbt 1667 A substitution into a theorem remains true. (See chvar 1640 and chvarv 1812 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝜑       [𝑦 / 𝑥]𝜑
 
Theoremequsb1 1668 Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
[𝑦 / 𝑥]𝑥 = 𝑦
 
Theoremequsb2 1669 Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
[𝑦 / 𝑥]𝑦 = 𝑥
 
Theoremsbiedh 1670 Conversion of implicit substitution to explicit substitution (deduction version of sbieh 1673). New proofs should use sbied 1671 instead. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theoremsbied 1671 Conversion of implicit substitution to explicit substitution (deduction version of sbie 1674). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theoremsbiedv 1672* Conversion of implicit substitution to explicit substitution (deduction version of sbie 1674). (Contributed by NM, 7-Jan-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theoremsbieh 1673 Conversion of implicit substitution to explicit substitution. New proofs should use sbie 1674 instead. (Contributed by NM, 30-Jun-1994.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theoremsbie 1674 Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
1.3.11  Theorems using axiom ax-11
 
Theoremequs5a 1675 A property related to substitution that unlike equs5 1710 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
(∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremequs5e 1676 A property related to substitution that unlike equs5 1710 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) (Revised by NM, 3-Feb-2015.)
(∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
 
Theoremax11e 1677 Analogue to ax-11 1397 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.)
(𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑦𝜑))
 
Theoremax10oe 1678 Quantifier Substitution for existential quantifiers. Analogue to ax10o 1603 but for rather than . (Contributed by Jim Kingdon, 21-Dec-2017.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑦𝜓))
 
Theoremdrex1 1679 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) (Revised by NM, 3-Feb-2015.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓))
 
Theoremdrsb1 1680 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
(∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
 
Theoremexdistrfor 1681 Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Jim Kingdon, 25-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦𝜑)       (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
 
Theoremsb4a 1682 A version of sb4 1713 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremequs45f 1683 Two ways of expressing substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 25-Apr-2008.)
(𝜑 → ∀𝑦𝜑)       (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb6f 1684 Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 30-Apr-2008.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb5f 1685 Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 18-May-2008.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb4e 1686 One direction of a simplified definition of substitution that unlike sb4 1713 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
 
Theoremhbsb2a 1687 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremhbsb2e 1688 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)
 
Theoremhbsb3 1689 If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremnfs1 1690 If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑦𝜑       𝑥[𝑦 / 𝑥]𝜑
 
Theoremsbcof2 1691 Version of sbco 1842 where 𝑥 is not free in 𝜑. (Contributed by Jim Kingdon, 28-Dec-2017.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
1.4  Predicate calculus with distinct variables
 
1.4.1  Derive the axiom of distinct variables ax-16
 
Theoremspimv 1692* A version of spim 1626 with a distinct variable requirement instead of a bound variable hypothesis. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremaev 1693* A "distinctor elimination" lemma with no restrictions on variables in the consequent, proved without using ax-16 1695. (Contributed by NM, 8-Nov-2006.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣)
 
Theoremax16 1694* Theorem showing that ax-16 1695 is redundant if ax-17 1419 is included in the axiom system. The important part of the proof is provided by aev 1693.

See ax16ALT 1739 for an alternate proof that does not require ax-10 1396 or ax-12 1402.

This theorem should not be referenced in any proof. Instead, use ax-16 1695 below so that theorems needing ax-16 1695 can be more easily identified. (Contributed by NM, 8-Nov-2006.)

(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Axiomax-16 1695* Axiom of Distinct Variables. The only axiom of predicate calculus requiring that variables be distinct (if we consider ax-17 1419 to be a metatheorem and not an axiom). Axiom scheme C16' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases. It is a somewhat bizarre axiom since the antecedent is always false in set theory, but nonetheless it is technically necessary as you can see from its uses.

This axiom is redundant if we include ax-17 1419; see theorem ax16 1694.

This axiom is obsolete and should no longer be used. It is proved above as theorem ax16 1694. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Theoremdveeq2 1696* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
 
Theoremdveeq2or 1697* Quantifier introduction when one pair of variables is distinct. Like dveeq2 1696 but connecting 𝑥𝑥 = 𝑦 by a disjunction rather than negation and implication makes the theorem stronger in intuitionistic logic. (Contributed by Jim Kingdon, 1-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
 
TheoremdvelimfALT2 1698* Proof of dvelimf 1891 using dveeq2 1696 (shown as the last hypothesis) instead of ax-12 1402. This shows that ax-12 1402 could be replaced by dveeq2 1696 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))    &   (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremnd5 1699* A lemma for proving conditionless ZFC axioms. (Contributed by NM, 8-Jan-2002.)
(¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
 
Theoremexlimdv 1700* Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
  Copyright terms: Public domain < Previous  Next >