Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomli GIF version

Theorem mulcomli 7034
 Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
mulcomli.3 (𝐴 · 𝐵) = 𝐶
Assertion
Ref Expression
mulcomli (𝐵 · 𝐴) = 𝐶

Proof of Theorem mulcomli
StepHypRef Expression
1 axi.2 . . 3 𝐵 ∈ ℂ
2 axi.1 . . 3 𝐴 ∈ ℂ
31, 2mulcomi 7033 . 2 (𝐵 · 𝐴) = (𝐴 · 𝐵)
4 mulcomli.3 . 2 (𝐴 · 𝐵) = 𝐶
53, 4eqtri 2060 1 (𝐵 · 𝐴) = 𝐶
 Colors of variables: wff set class Syntax hints:   = wceq 1243   ∈ wcel 1393  (class class class)co 5512  ℂcc 6887   · cmul 6894 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-4 1400  ax-17 1419  ax-ext 2022  ax-mulcom 6985 This theorem depends on definitions:  df-bi 110  df-cleq 2033 This theorem is referenced by:  nummul2c  8404
 Copyright terms: Public domain W3C validator