Home Intuitionistic Logic ExplorerTheorem List (p. 94 of 102) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9301-9400   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremexpmulzap 9301 Product of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))

Theoremexpsubap 9302 Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))

Theoremexpp1zap 9303 Value of a nonzero complex number raised to an integer power plus one. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))

Theoremexpm1ap 9304 Value of a complex number raised to an integer power minus one. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 − 1)) = ((𝐴𝑁) / 𝐴))

Theoremexpdivap 9305 Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴𝑁) / (𝐵𝑁)))

Theoremltexp2a 9306 Ordering relationship for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
(((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴𝑀 < 𝑁)) → (𝐴𝑀) < (𝐴𝑁))

Theoremleexp2a 9307 Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.)
((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))

Theoremleexp2r 9308 Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
(((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (0 ≤ 𝐴𝐴 ≤ 1)) → (𝐴𝑁) ≤ (𝐴𝑀))

Theoremleexp1a 9309 Weak mantissa ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))

Theoremexple1 9310 Nonnegative integer exponentiation with a mantissa between 0 and 1 inclusive is less than or equal to 1. (Contributed by Paul Chapman, 29-Dec-2007.) (Revised by Mario Carneiro, 5-Jun-2014.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ≤ 1)

Theoremexpubnd 9311 An upper bound on 𝐴𝑁 when 2 ≤ 𝐴. (Contributed by NM, 19-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))

Theoremsqval 9312 Value of the square of a complex number. (Contributed by Raph Levien, 10-Apr-2004.)
(𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))

Theoremsqneg 9313 The square of the negative of a number.) (Contributed by NM, 15-Jan-2006.)
(𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))

Theoremsqsubswap 9314 Swap the order of subtraction in a square. (Contributed by Scott Fenton, 10-Jun-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = ((𝐵𝐴)↑2))

Theoremsqcl 9315 Closure of square. (Contributed by NM, 10-Aug-1999.)
(𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)

Theoremsqmul 9316 Distribution of square over multiplication. (Contributed by NM, 21-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)))

Theoremsqeq0 9317 A number is zero iff its square is zero. (Contributed by NM, 11-Mar-2006.)
(𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))

Theoremsqdivap 9318 Distribution of square over division. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))

Theoremsqne0 9319 A number is nonzero iff its square is nonzero. See also sqap0 9320 which is the same but with not equal changed to apart. (Contributed by NM, 11-Mar-2006.)
(𝐴 ∈ ℂ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0))

Theoremsqap0 9320 A number is apart from zero iff its square is apart from zero. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝐴 ∈ ℂ → ((𝐴↑2) # 0 ↔ 𝐴 # 0))

Theoremresqcl 9321 Closure of the square of a real number. (Contributed by NM, 18-Oct-1999.)
(𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)

Theoremsqgt0ap 9322 The square of a nonzero real is positive. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴↑2))

Theoremnnsqcl 9323 The naturals are closed under squaring. (Contributed by Scott Fenton, 29-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝐴 ∈ ℕ → (𝐴↑2) ∈ ℕ)

Theoremzsqcl 9324 Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)

Theoremqsqcl 9325 The square of a rational is rational. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)

Theoremsq11 9326 The square function is one-to-one for nonnegative reals. Also see sq11ap 9414 which would easily follow from this given excluded middle, but which for us is proved another way. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))

Theoremlt2sq 9327 The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 24-Feb-2006.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2)))

Theoremle2sq 9328 The square function on nonnegative reals is monotonic. (Contributed by NM, 18-Oct-1999.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))

Theoremle2sq2 9329 The square of a 'less than or equal to' ordering. (Contributed by NM, 21-Mar-2008.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐴𝐵)) → (𝐴↑2) ≤ (𝐵↑2))

Theoremsqge0 9330 A square of a real is nonnegative. (Contributed by NM, 18-Oct-1999.)
(𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))

Theoremzsqcl2 9331 The square of an integer is a nonnegative integer. (Contributed by Mario Carneiro, 18-Apr-2014.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℤ → (𝐴↑2) ∈ ℕ0)

Theoremsumsqeq0 9332 Two real numbers are equal to 0 iff their Euclidean norm is. (Contributed by NM, 29-Apr-2005.) (Revised by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 28-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))

Theoremsqvali 9333 Value of square. Inference version. (Contributed by NM, 1-Aug-1999.)
𝐴 ∈ ℂ       (𝐴↑2) = (𝐴 · 𝐴)

Theoremsqcli 9334 Closure of square. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (𝐴↑2) ∈ ℂ

Theoremsqeq0i 9335 A number is zero iff its square is zero. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       ((𝐴↑2) = 0 ↔ 𝐴 = 0)

Theoremsqmuli 9336 Distribution of square over multiplication. (Contributed by NM, 3-Sep-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))

Theoremsqdivapi 9337 Distribution of square over division. (Contributed by Jim Kingdon, 12-Jun-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 # 0       ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))

Theoremresqcli 9338 Closure of square in reals. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ       (𝐴↑2) ∈ ℝ

Theoremsqgt0api 9339 The square of a nonzero real is positive. (Contributed by Jim Kingdon, 12-Jun-2020.)
𝐴 ∈ ℝ       (𝐴 # 0 → 0 < (𝐴↑2))

Theoremsqge0i 9340 A square of a real is nonnegative. (Contributed by NM, 3-Aug-1999.)
𝐴 ∈ ℝ       0 ≤ (𝐴↑2)

Theoremlt2sqi 9341 The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 12-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2)))

Theoremle2sqi 9342 The square function on nonnegative reals is monotonic. (Contributed by NM, 12-Sep-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2)))

Theoremsq11i 9343 The square function is one-to-one for nonnegative reals. (Contributed by NM, 27-Oct-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵))

Theoremsq0 9344 The square of 0 is 0. (Contributed by NM, 6-Jun-2006.)
(0↑2) = 0

Theoremsq0i 9345 If a number is zero, its square is zero. (Contributed by FL, 10-Dec-2006.)
(𝐴 = 0 → (𝐴↑2) = 0)

Theoremsq0id 9346 If a number is zero, its square is zero. Deduction form of sq0i 9345. Converse of sqeq0d 9380. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 = 0)       (𝜑 → (𝐴↑2) = 0)

Theoremsq1 9347 The square of 1 is 1. (Contributed by NM, 22-Aug-1999.)
(1↑2) = 1

Theoremneg1sqe1 9348 -1 squared is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(-1↑2) = 1

Theoremsq2 9349 The square of 2 is 4. (Contributed by NM, 22-Aug-1999.)
(2↑2) = 4

Theoremsq3 9350 The square of 3 is 9. (Contributed by NM, 26-Apr-2006.)
(3↑2) = 9

Theoremcu2 9351 The cube of 2 is 8. (Contributed by NM, 2-Aug-2004.)
(2↑3) = 8

Theoremirec 9352 The reciprocal of i. (Contributed by NM, 11-Oct-1999.)
(1 / i) = -i

Theoremi2 9353 i squared. (Contributed by NM, 6-May-1999.)
(i↑2) = -1

Theoremi3 9354 i cubed. (Contributed by NM, 31-Jan-2007.)
(i↑3) = -i

Theoremi4 9355 i to the fourth power. (Contributed by NM, 31-Jan-2007.)
(i↑4) = 1

Theoremnnlesq 9356 A positive integer is less than or equal to its square. (Contributed by NM, 15-Sep-1999.) (Revised by Mario Carneiro, 12-Sep-2015.)
(𝑁 ∈ ℕ → 𝑁 ≤ (𝑁↑2))

Theoremexpnass 9357 A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.)
((3↑3)↑3) < (3↑(3↑3))

Theoremsubsq 9358 Factor the difference of two squares. (Contributed by NM, 21-Feb-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))

Theoremsubsq2 9359 Express the difference of the squares of two numbers as a polynomial in the difference of the numbers. (Contributed by NM, 21-Feb-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴𝐵)↑2) + ((2 · 𝐵) · (𝐴𝐵))))

Theorembinom2i 9360 The square of a binomial. (Contributed by NM, 11-Aug-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))

Theoremsubsqi 9361 Factor the difference of two squares. (Contributed by NM, 7-Feb-2005.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵))

Theorembinom2 9362 The square of a binomial. (Contributed by FL, 10-Dec-2006.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))

Theorembinom21 9363 Special case of binom2 9362 where 𝐵 = 1. (Contributed by Scott Fenton, 11-May-2014.)
(𝐴 ∈ ℂ → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1))

Theorembinom2sub 9364 Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))

Theorembinom2subi 9365 Expand the square of a subtraction. (Contributed by Scott Fenton, 13-Jun-2013.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))

Theorembinom3 9366 The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))

Theoremzesq 9367 An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.)
(𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))

Theoremnnesq 9368 A positive integer is even iff its square is even. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ((𝑁↑2) / 2) ∈ ℕ))

Theorembernneq 9369 Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))

Theorembernneq2 9370 Variation of Bernoulli's inequality bernneq 9369. (Contributed by NM, 18-Oct-2007.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴𝑁))

Theorembernneq3 9371 A corollary of bernneq 9369. (Contributed by Mario Carneiro, 11-Mar-2014.)
((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))

Theoremexpnbnd 9372* Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))

Theoremexpnlbnd 9373* The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵𝑘)) < 𝐴)

Theoremexpnlbnd2 9374* The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)

Theoremexp0d 9375 Value of a complex number raised to the 0th power. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴↑0) = 1)

Theoremexp1d 9376 Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴↑1) = 𝐴)

Theoremexpeq0d 9377 Positive integer exponentiation is 0 iff its mantissa is 0. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → (𝐴𝑁) = 0)       (𝜑𝐴 = 0)

Theoremsqvald 9378 Value of square. Inference version. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))

Theoremsqcld 9379 Closure of square. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴↑2) ∈ ℂ)

Theoremsqeq0d 9380 A number is zero iff its square is zero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (𝐴↑2) = 0)       (𝜑𝐴 = 0)

Theoremexpcld 9381 Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝐴𝑁) ∈ ℂ)

Theoremexpp1d 9382 Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))

Theoremexpaddd 9383 Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑀 ∈ ℕ0)       (𝜑 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Theoremexpmuld 9384 Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑀 ∈ ℕ0)       (𝜑 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))

Theoremsqrecapd 9385 Square of reciprocal. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → ((1 / 𝐴)↑2) = (1 / (𝐴↑2)))

Theoremexpclzapd 9386 Closure law for integer exponentiation. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴𝑁) ∈ ℂ)

Theoremexpap0d 9387 Nonnegative integer exponentiation is nonzero if its mantissa is nonzero. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴𝑁) # 0)

Theoremexpnegapd 9388 Value of a complex number raised to a negative power. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Theoremexprecapd 9389 Nonnegative integer exponentiation of a reciprocal. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → ((1 / 𝐴)↑𝑁) = (1 / (𝐴𝑁)))

Theoremexpp1zapd 9390 Value of a nonzero complex number raised to an integer power plus one. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))

Theoremexpm1apd 9391 Value of a complex number raised to an integer power minus one. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴↑(𝑁 − 1)) = ((𝐴𝑁) / 𝐴))

Theoremexpsubapd 9392 Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)       (𝜑 → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))

Theoremsqmuld 9393 Distribution of square over multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)))

Theoremsqdivapd 9394 Distribution of square over division. (Contributed by Jim Kingdon, 13-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))

Theoremexpdivapd 9395 Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 13-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝐴 / 𝐵)↑𝑁) = ((𝐴𝑁) / (𝐵𝑁)))

Theoremmulexpd 9396 Positive integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))

Theorem0expd 9397 Value of zero raised to a positive integer power. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → (0↑𝑁) = 0)

Theoremreexpcld 9398 Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝐴𝑁) ∈ ℝ)

Theoremexpge0d 9399 Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → 0 ≤ (𝐴𝑁))

Theoremexpge1d 9400 Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → 1 ≤ 𝐴)       (𝜑 → 1 ≤ (𝐴𝑁))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10124
 Copyright terms: Public domain < Previous  Next >