Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp1a GIF version

Theorem leexp1a 9309
 Description: Weak mantissa ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.)
Assertion
Ref Expression
leexp1a (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))

Proof of Theorem leexp1a
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5520 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
2 oveq2 5520 . . . . . . 7 (𝑗 = 0 → (𝐵𝑗) = (𝐵↑0))
31, 2breq12d 3777 . . . . . 6 (𝑗 = 0 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴↑0) ≤ (𝐵↑0)))
43imbi2d 219 . . . . 5 (𝑗 = 0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑0) ≤ (𝐵↑0))))
5 oveq2 5520 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
6 oveq2 5520 . . . . . . 7 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
75, 6breq12d 3777 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴𝑘) ≤ (𝐵𝑘)))
87imbi2d 219 . . . . 5 (𝑗 = 𝑘 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑘) ≤ (𝐵𝑘))))
9 oveq2 5520 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
10 oveq2 5520 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐵𝑗) = (𝐵↑(𝑘 + 1)))
119, 10breq12d 3777 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))
1211imbi2d 219 . . . . 5 (𝑗 = (𝑘 + 1) → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
13 oveq2 5520 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
14 oveq2 5520 . . . . . . 7 (𝑗 = 𝑁 → (𝐵𝑗) = (𝐵𝑁))
1513, 14breq12d 3777 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑗) ≤ (𝐵𝑗) ↔ (𝐴𝑁) ≤ (𝐵𝑁)))
1615imbi2d 219 . . . . 5 (𝑗 = 𝑁 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑗) ≤ (𝐵𝑗)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))))
17 recn 7014 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
18 recn 7014 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
19 exp0 9259 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2019adantr 261 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) = 1)
21 1le1 7563 . . . . . . . . 9 1 ≤ 1
2220, 21syl6eqbr 3801 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ 1)
23 exp0 9259 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
2423adantl 262 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑0) = 1)
2522, 24breqtrrd 3790 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑0) ≤ (𝐵↑0))
2617, 18, 25syl2an 273 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴↑0) ≤ (𝐵↑0))
2726adantr 261 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑0) ≤ (𝐵↑0))
28 simpll 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
29 reexpcl 9272 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
3028, 29sylan 267 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
31 simplll 485 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
32 simpr 103 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
33 simplrl 487 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
34 expge0 9291 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑘))
3531, 32, 33, 34syl3anc 1135 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
36 simplr 482 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐵 ∈ ℝ)
37 reexpcl 9272 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3836, 37sylan 267 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
3930, 35, 38jca31 292 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ))
40 simpl 102 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
41 simpl 102 . . . . . . . . . . . . . 14 ((0 ≤ 𝐴𝐴𝐵) → 0 ≤ 𝐴)
4240, 41anim12i 321 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4342adantr 261 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
44 simpllr 486 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℝ)
4539, 43, 44jca32 293 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → ((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)))
4645adantr 261 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)))
47 simpr 103 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴𝑘) ≤ (𝐵𝑘))
48 simplrr 488 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐵)
4948adantr 261 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → 𝐴𝐵)
5047, 49jca 290 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝐴𝐵))
51 lemul12a 7828 . . . . . . . . . 10 (((((𝐴𝑘) ∈ ℝ ∧ 0 ≤ (𝐴𝑘)) ∧ (𝐵𝑘) ∈ ℝ) ∧ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)) → (((𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝐴𝐵) → ((𝐴𝑘) · 𝐴) ≤ ((𝐵𝑘) · 𝐵)))
5246, 50, 51sylc 56 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐴𝑘) · 𝐴) ≤ ((𝐵𝑘) · 𝐵))
53 expp1 9262 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5417, 53sylan 267 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5554adantlr 446 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5655adantlr 446 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5756adantr 261 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
58 expp1 9262 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5918, 58sylan 267 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6059adantll 445 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6160adantlr 446 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6261adantr 261 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
6352, 57, 623brtr4d 3794 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) ∧ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))
6463ex 108 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≤ (𝐵𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1))))
6564expcom 109 . . . . . 6 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → ((𝐴𝑘) ≤ (𝐵𝑘) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
6665a2d 23 . . . . 5 (𝑘 ∈ ℕ0 → ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑘) ≤ (𝐵𝑘)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴↑(𝑘 + 1)) ≤ (𝐵↑(𝑘 + 1)))))
674, 8, 12, 16, 27, 66nn0ind 8352 . . . 4 (𝑁 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁)))
6867exp4c 350 . . 3 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → ((0 ≤ 𝐴𝐴𝐵) → (𝐴𝑁) ≤ (𝐵𝑁)))))
6968com3l 75 . 2 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝑁 ∈ ℕ0 → ((0 ≤ 𝐴𝐴𝐵) → (𝐴𝑁) ≤ (𝐵𝑁)))))
70693imp1 1117 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴𝐵)) → (𝐴𝑁) ≤ (𝐵𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 885   = wceq 1243   ∈ wcel 1393   class class class wbr 3764  (class class class)co 5512  ℂcc 6887  ℝcr 6888  0cc0 6889  1c1 6890   + caddc 6892   · cmul 6894   ≤ cle 7061  ℕ0cn0 8181  ↑cexp 9254 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-iseq 9212  df-iexp 9255 This theorem is referenced by:  expubnd  9311
 Copyright terms: Public domain W3C validator