ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expp1 GIF version

Theorem expp1 9236
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))

Proof of Theorem expp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 8181 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simpr 103 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
3 elnnuz 8507 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
42, 3sylib 127 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
5 cnex 7003 . . . . . . 7 ℂ ∈ V
65a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ℂ ∈ V)
7 simpll 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
8 elnnuz 8507 . . . . . . . . 9 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
9 fvconst2g 5375 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
109eleq1d 2106 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → (((ℕ × {𝐴})‘𝑥) ∈ ℂ ↔ 𝐴 ∈ ℂ))
118, 10sylan2br 272 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ‘1)) → (((ℕ × {𝐴})‘𝑥) ∈ ℂ ↔ 𝐴 ∈ ℂ))
1211adantlr 446 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℤ‘1)) → (((ℕ × {𝐴})‘𝑥) ∈ ℂ ↔ 𝐴 ∈ ℂ))
137, 12mpbird 156 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
14 mulcl 7006 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
1514adantl 262 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
164, 6, 13, 15iseqp1 9199 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}), ℂ)‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
17 peano2nn 7924 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
18 fvconst2g 5375 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴)
1917, 18sylan2 270 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴)
2019oveq2d 5528 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))) = ((seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) · 𝐴))
2116, 20eqtrd 2072 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}), ℂ)‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) · 𝐴))
22 expinnval 9232 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}), ℂ)‘(𝑁 + 1)))
2317, 22sylan2 270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}), ℂ)‘(𝑁 + 1)))
24 expinnval 9232 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
2524oveq1d 5527 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) · 𝐴) = ((seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) · 𝐴))
2621, 23, 253eqtr4d 2082 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
27 exp1 9235 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
28 mulid2 7023 . . . . . 6 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2927, 28eqtr4d 2075 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑1) = (1 · 𝐴))
3029adantr 261 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑1) = (1 · 𝐴))
31 simpr 103 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → 𝑁 = 0)
3231oveq1d 5527 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = (0 + 1))
33 0p1e1 8029 . . . . . 6 (0 + 1) = 1
3432, 33syl6eq 2088 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = 1)
3534oveq2d 5528 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = (𝐴↑1))
36 oveq2 5520 . . . . . 6 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
37 exp0 9233 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3836, 37sylan9eqr 2094 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
3938oveq1d 5527 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → ((𝐴𝑁) · 𝐴) = (1 · 𝐴))
4030, 35, 393eqtr4d 2082 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
4126, 40jaodan 710 . 2 ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
421, 41sylan2b 271 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629   = wceq 1243  wcel 1393  Vcvv 2557  {csn 3375   × cxp 4343  cfv 4902  (class class class)co 5512  cc 6885  0cc0 6887  1c1 6888   + caddc 6890   · cmul 6892  cn 7912  0cn0 8179  cuz 8471  seqcseq 9185  cexp 9228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6973  ax-resscn 6974  ax-1cn 6975  ax-1re 6976  ax-icn 6977  ax-addcl 6978  ax-addrcl 6979  ax-mulcl 6980  ax-mulrcl 6981  ax-addcom 6982  ax-mulcom 6983  ax-addass 6984  ax-mulass 6985  ax-distr 6986  ax-i2m1 6987  ax-1rid 6989  ax-0id 6990  ax-rnegex 6991  ax-precex 6992  ax-cnre 6993  ax-pre-ltirr 6994  ax-pre-ltwlin 6995  ax-pre-lttrn 6996  ax-pre-apti 6997  ax-pre-ltadd 6998  ax-pre-mulgt0 6999  ax-pre-mulext 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-iltp 6566  df-enr 6809  df-nr 6810  df-ltr 6813  df-0r 6814  df-1r 6815  df-0 6894  df-1 6895  df-r 6897  df-lt 6900  df-pnf 7060  df-mnf 7061  df-xr 7062  df-ltxr 7063  df-le 7064  df-sub 7182  df-neg 7183  df-reap 7564  df-ap 7571  df-div 7650  df-inn 7913  df-n0 8180  df-z 8244  df-uz 8472  df-iseq 9186  df-iexp 9229
This theorem is referenced by:  expcllem  9240  expm1t  9257  expap0  9259  mulexp  9268  expadd  9271  expmul  9274  leexp2r  9282  leexp1a  9283  sqval  9286  cu2  9325  i3  9328  binom3  9340  bernneq  9343  expp1d  9356  cjexp  9467  absexp  9649
  Copyright terms: Public domain W3C validator