 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-frec Structured version   GIF version

Definition df-frec 5918
 Description: Define a recursive definition generator on 𝜔 (the class of finite ordinals) with characteristic function 𝐹 and initial value 𝐼. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our frec operation (especially when df-recs 5861 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple; see frec0g 5922 and frecsuc 5930. Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4270. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 5931, this definition and df-irdg 5897 restricted to 𝜔 produce the same result. Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.)
Assertion
Ref Expression
df-frec frec(𝐹, 𝐼) = (recs((g V ↦ {x ∣ (𝑚 𝜔 (dom g = suc 𝑚 x (𝐹‘(g𝑚))) (dom g = ∅ x 𝐼))})) ↾ 𝜔)
Distinct variable groups:   x,g,𝑚,𝐹   x,𝐼,g,𝑚

Detailed syntax breakdown of Definition df-frec
StepHypRef Expression
1 cF . . 3 class 𝐹
2 cI . . 3 class 𝐼
31, 2cfrec 5917 . 2 class frec(𝐹, 𝐼)
4 vg . . . . 5 setvar g
5 cvv 2551 . . . . 5 class V
64cv 1241 . . . . . . . . . . 11 class g
76cdm 4288 . . . . . . . . . 10 class dom g
8 vm . . . . . . . . . . . 12 setvar 𝑚
98cv 1241 . . . . . . . . . . 11 class 𝑚
109csuc 4068 . . . . . . . . . 10 class suc 𝑚
117, 10wceq 1242 . . . . . . . . 9 wff dom g = suc 𝑚
12 vx . . . . . . . . . . 11 setvar x
1312cv 1241 . . . . . . . . . 10 class x
149, 6cfv 4845 . . . . . . . . . . 11 class (g𝑚)
1514, 1cfv 4845 . . . . . . . . . 10 class (𝐹‘(g𝑚))
1613, 15wcel 1390 . . . . . . . . 9 wff x (𝐹‘(g𝑚))
1711, 16wa 97 . . . . . . . 8 wff (dom g = suc 𝑚 x (𝐹‘(g𝑚)))
18 com 4256 . . . . . . . 8 class 𝜔
1917, 8, 18wrex 2301 . . . . . . 7 wff 𝑚 𝜔 (dom g = suc 𝑚 x (𝐹‘(g𝑚)))
20 c0 3218 . . . . . . . . 9 class
217, 20wceq 1242 . . . . . . . 8 wff dom g = ∅
2213, 2wcel 1390 . . . . . . . 8 wff x 𝐼
2321, 22wa 97 . . . . . . 7 wff (dom g = ∅ x 𝐼)
2419, 23wo 628 . . . . . 6 wff (𝑚 𝜔 (dom g = suc 𝑚 x (𝐹‘(g𝑚))) (dom g = ∅ x 𝐼))
2524, 12cab 2023 . . . . 5 class {x ∣ (𝑚 𝜔 (dom g = suc 𝑚 x (𝐹‘(g𝑚))) (dom g = ∅ x 𝐼))}
264, 5, 25cmpt 3809 . . . 4 class (g V ↦ {x ∣ (𝑚 𝜔 (dom g = suc 𝑚 x (𝐹‘(g𝑚))) (dom g = ∅ x 𝐼))})
2726crecs 5860 . . 3 class recs((g V ↦ {x ∣ (𝑚 𝜔 (dom g = suc 𝑚 x (𝐹‘(g𝑚))) (dom g = ∅ x 𝐼))}))
2827, 18cres 4290 . 2 class (recs((g V ↦ {x ∣ (𝑚 𝜔 (dom g = suc 𝑚 x (𝐹‘(g𝑚))) (dom g = ∅ x 𝐼))})) ↾ 𝜔)
293, 28wceq 1242 1 wff frec(𝐹, 𝐼) = (recs((g V ↦ {x ∣ (𝑚 𝜔 (dom g = suc 𝑚 x (𝐹‘(g𝑚))) (dom g = ∅ x 𝐼))})) ↾ 𝜔)
 Colors of variables: wff set class This definition is referenced by:  freceq1  5919  freceq2  5920  nffrec  5921  frec0g  5922  frecfnom  5925  frecsuclem1  5926  frecsuclem2  5928
 Copyright terms: Public domain W3C validator