ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrec Structured version   GIF version

Theorem nffrec 5921
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nffrec.1 x𝐹
nffrec.2 xA
Assertion
Ref Expression
nffrec xfrec(𝐹, A)

Proof of Theorem nffrec
Dummy variables g 𝑚 y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 5918 . 2 frec(𝐹, A) = (recs((g V ↦ {y ∣ (𝑚 𝜔 (dom g = suc 𝑚 y (𝐹‘(g𝑚))) (dom g = ∅ y A))})) ↾ 𝜔)
2 nfcv 2175 . . . . 5 xV
3 nfcv 2175 . . . . . . . 8 x𝜔
4 nfv 1418 . . . . . . . . 9 xdom g = suc 𝑚
5 nffrec.1 . . . . . . . . . . 11 x𝐹
6 nfcv 2175 . . . . . . . . . . 11 x(g𝑚)
75, 6nffv 5128 . . . . . . . . . 10 x(𝐹‘(g𝑚))
87nfcri 2169 . . . . . . . . 9 x y (𝐹‘(g𝑚))
94, 8nfan 1454 . . . . . . . 8 x(dom g = suc 𝑚 y (𝐹‘(g𝑚)))
103, 9nfrexya 2357 . . . . . . 7 x𝑚 𝜔 (dom g = suc 𝑚 y (𝐹‘(g𝑚)))
11 nfv 1418 . . . . . . . 8 xdom g = ∅
12 nffrec.2 . . . . . . . . 9 xA
1312nfcri 2169 . . . . . . . 8 x y A
1411, 13nfan 1454 . . . . . . 7 x(dom g = ∅ y A)
1510, 14nfor 1463 . . . . . 6 x(𝑚 𝜔 (dom g = suc 𝑚 y (𝐹‘(g𝑚))) (dom g = ∅ y A))
1615nfab 2179 . . . . 5 x{y ∣ (𝑚 𝜔 (dom g = suc 𝑚 y (𝐹‘(g𝑚))) (dom g = ∅ y A))}
172, 16nfmpt 3840 . . . 4 x(g V ↦ {y ∣ (𝑚 𝜔 (dom g = suc 𝑚 y (𝐹‘(g𝑚))) (dom g = ∅ y A))})
1817nfrecs 5863 . . 3 xrecs((g V ↦ {y ∣ (𝑚 𝜔 (dom g = suc 𝑚 y (𝐹‘(g𝑚))) (dom g = ∅ y A))}))
1918, 3nfres 4557 . 2 x(recs((g V ↦ {y ∣ (𝑚 𝜔 (dom g = suc 𝑚 y (𝐹‘(g𝑚))) (dom g = ∅ y A))})) ↾ 𝜔)
201, 19nfcxfr 2172 1 xfrec(𝐹, A)
Colors of variables: wff set class
Syntax hints:   wa 97   wo 628   = wceq 1242   wcel 1390  {cab 2023  wnfc 2162  wrex 2301  Vcvv 2551  c0 3218  cmpt 3809  suc csuc 4068  𝜔com 4256  dom cdm 4288  cres 4290  cfv 4845  recscrecs 5860  freccfrec 5917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-un 2916  df-in 2918  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-mpt 3811  df-xp 4294  df-res 4300  df-iota 4810  df-fv 4853  df-recs 5861  df-frec 5918
This theorem is referenced by:  nfiseq  8878
  Copyright terms: Public domain W3C validator