Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  expap0 GIF version

Theorem expap0 9285
 Description: Positive integer exponentiation is apart from zero iff its mantissa is apart from zero. That it is easier to prove this first, and then prove expeq0 9286 in terms of it, rather than the other way around, is perhaps an illustration of the maxim "In constructive analysis, the apartness is more basic [ than ] equality." ([Geuvers], p. 1). (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expap0 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))

Proof of Theorem expap0
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5520 . . . . . 6 (𝑗 = 1 → (𝐴𝑗) = (𝐴↑1))
21breq1d 3774 . . . . 5 (𝑗 = 1 → ((𝐴𝑗) # 0 ↔ (𝐴↑1) # 0))
32bibi1d 222 . . . 4 (𝑗 = 1 → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴↑1) # 0 ↔ 𝐴 # 0)))
43imbi2d 219 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) # 0 ↔ 𝐴 # 0))))
5 oveq2 5520 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65breq1d 3774 . . . . 5 (𝑗 = 𝑘 → ((𝐴𝑗) # 0 ↔ (𝐴𝑘) # 0))
76bibi1d 222 . . . 4 (𝑗 = 𝑘 → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)))
87imbi2d 219 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑘) # 0 ↔ 𝐴 # 0))))
9 oveq2 5520 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109breq1d 3774 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) # 0 ↔ (𝐴↑(𝑘 + 1)) # 0))
1110bibi1d 222 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0)))
1211imbi2d 219 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))))
13 oveq2 5520 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413breq1d 3774 . . . . 5 (𝑗 = 𝑁 → ((𝐴𝑗) # 0 ↔ (𝐴𝑁) # 0))
1514bibi1d 222 . . . 4 (𝑗 = 𝑁 → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴𝑁) # 0 ↔ 𝐴 # 0)))
1615imbi2d 219 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))))
17 exp1 9261 . . . 4 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1817breq1d 3774 . . 3 (𝐴 ∈ ℂ → ((𝐴↑1) # 0 ↔ 𝐴 # 0))
19 nnnn0 8188 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
20 expp1 9262 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2120breq1d 3774 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
2221ancoms 255 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
2319, 22sylan 267 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
2423adantr 261 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
25 simplr 482 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → 𝐴 ∈ ℂ)
2619ad2antrr 457 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → 𝑘 ∈ ℕ0)
27 expcl 9273 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2825, 26, 27syl2anc 391 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (𝐴𝑘) ∈ ℂ)
2928, 25mulap0bd 7638 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (((𝐴𝑘) # 0 ∧ 𝐴 # 0) ↔ ((𝐴𝑘) · 𝐴) # 0))
30 anbi1 439 . . . . . . . 8 (((𝐴𝑘) # 0 ↔ 𝐴 # 0) → (((𝐴𝑘) # 0 ∧ 𝐴 # 0) ↔ (𝐴 # 0 ∧ 𝐴 # 0)))
3130adantl 262 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (((𝐴𝑘) # 0 ∧ 𝐴 # 0) ↔ (𝐴 # 0 ∧ 𝐴 # 0)))
3224, 29, 313bitr2d 205 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ (𝐴 # 0 ∧ 𝐴 # 0)))
33 anidm 376 . . . . . 6 ((𝐴 # 0 ∧ 𝐴 # 0) ↔ 𝐴 # 0)
3432, 33syl6bb 185 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))
3534exp31 346 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴𝑘) # 0 ↔ 𝐴 # 0) → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))))
3635a2d 23 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))))
374, 8, 12, 16, 18, 36nnind 7930 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴𝑁) # 0 ↔ 𝐴 # 0)))
3837impcom 116 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1243   ∈ wcel 1393   class class class wbr 3764  (class class class)co 5512  ℂcc 6887  0cc0 6889  1c1 6890   + caddc 6892   · cmul 6894   # cap 7572  ℕcn 7914  ℕ0cn0 8181  ↑cexp 9254 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-iseq 9212  df-iexp 9255 This theorem is referenced by:  expeq0  9286  abs00ap  9660
 Copyright terms: Public domain W3C validator