Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr2d GIF version

Theorem 3bitr2d 205
 Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr2d.1 (𝜑 → (𝜓𝜒))
3bitr2d.2 (𝜑 → (𝜃𝜒))
3bitr2d.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitr2d (𝜑 → (𝜓𝜏))

Proof of Theorem 3bitr2d
StepHypRef Expression
1 3bitr2d.1 . . 3 (𝜑 → (𝜓𝜒))
2 3bitr2d.2 . . 3 (𝜑 → (𝜃𝜒))
31, 2bitr4d 180 . 2 (𝜑 → (𝜓𝜃))
4 3bitr2d.3 . 2 (𝜑 → (𝜃𝜏))
53, 4bitrd 177 1 (𝜑 → (𝜓𝜏))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  ceqsralt  2581  frecsuclem3  5990  indpi  6440  cauappcvgprlemladdru  6754  prsrlt  6871  lesub2  7452  ltsub2  7454  rec11ap  7686  avglt1  8163  rpnegap  8615  expap0  9285  2shfti  9432  mulreap  9464  nn0seqcvgd  9880
 Copyright terms: Public domain W3C validator