Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-0 | GIF version |
Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
df-0 | ⊢ 0 = 〈0R, 0R〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cc0 6889 | . 2 class 0 | |
2 | c0r 6396 | . . 3 class 0R | |
3 | 2, 2 | cop 3378 | . 2 class 〈0R, 0R〉 |
4 | 1, 3 | wceq 1243 | 1 wff 0 = 〈0R, 0R〉 |
Colors of variables: wff set class |
This definition is referenced by: pitoregt0 6925 axi2m1 6949 ax0lt1 6950 ax0id 6952 axrnegex 6953 axprecex 6954 axpre-mulgt0 6961 axcaucvglemres 6973 ax-0lt1 6990 |
Copyright terms: Public domain | W3C validator |