Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-icn | GIF version |
Description: i is a complex number. Axiom for real and complex numbers, justified by theorem axicn 6939. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 6891 | . 2 class i | |
2 | cc 6887 | . 2 class ℂ | |
3 | 1, 2 | wcel 1393 | 1 wff i ∈ ℂ |
Colors of variables: wff set class |
This axiom is referenced by: 0cn 7019 mulid1 7024 cnegexlem2 7187 cnegex 7189 0cnALT 7201 negicn 7212 ine0 7391 ixi 7574 rimul 7576 rereim 7577 apreap 7578 cru 7593 apreim 7594 mulreim 7595 apadd1 7599 apneg 7602 recextlem1 7632 recexaplem2 7633 recexap 7634 crap0 7910 cju 7913 it0e0 8146 2mulicn 8147 iap0 8148 2muliap0 8149 cnref1o 8582 irec 9352 i2 9353 i3 9354 i4 9355 imval 9450 imre 9451 reim 9452 crre 9457 crim 9458 remim 9460 mulreap 9464 cjreb 9466 recj 9467 reneg 9468 readd 9469 remullem 9471 imcj 9475 imneg 9476 imadd 9477 cjadd 9484 cjneg 9490 imval2 9494 rei 9499 imi 9500 cji 9502 cjreim 9503 cjreim2 9504 cjap 9506 cnrecnv 9510 rennim 9600 absi 9657 absreimsq 9665 absreim 9666 absimle 9680 climcvg1nlem 9868 qdencn 10124 |
Copyright terms: Public domain | W3C validator |