ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexap GIF version

Theorem recexap 7634
Description: Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
Assertion
Ref Expression
recexap ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexap
Dummy variables 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7023 . . 3 (𝐴 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)))
2 recexaplem2 7633 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝑎 + (i · 𝑏)) # 0) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0)
323expia 1106 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 + (i · 𝑏)) # 0 → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0))
4 remulcl 7009 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (𝑎 · 𝑎) ∈ ℝ)
54anidms 377 . . . . . . . . . . 11 (𝑎 ∈ ℝ → (𝑎 · 𝑎) ∈ ℝ)
6 remulcl 7009 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑏 · 𝑏) ∈ ℝ)
76anidms 377 . . . . . . . . . . 11 (𝑏 ∈ ℝ → (𝑏 · 𝑏) ∈ ℝ)
8 readdcl 7007 . . . . . . . . . . 11 (((𝑎 · 𝑎) ∈ ℝ ∧ (𝑏 · 𝑏) ∈ ℝ) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ)
95, 7, 8syl2an 273 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ)
10 0re 7027 . . . . . . . . . 10 0 ∈ ℝ
11 apreap 7578 . . . . . . . . . 10 ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0 ↔ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0))
129, 10, 11sylancl 392 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0 ↔ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0))
13 recexre 7569 . . . . . . . . . . . 12 ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0) → ∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1)
149, 13sylan 267 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0) → ∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1)
15 recn 7014 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
16 recn 7014 . . . . . . . . . . . . 13 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
17 recn 7014 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
18 ax-icn 6979 . . . . . . . . . . . . . . . . . . . . 21 i ∈ ℂ
19 mulcl 7008 . . . . . . . . . . . . . . . . . . . . 21 ((i ∈ ℂ ∧ 𝑏 ∈ ℂ) → (i · 𝑏) ∈ ℂ)
2018, 19mpan 400 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℂ → (i · 𝑏) ∈ ℂ)
21 subcl 7210 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ (i · 𝑏) ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈ ℂ)
2220, 21sylan2 270 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈ ℂ)
23 mulcl 7008 . . . . . . . . . . . . . . . . . . 19 (((𝑎 − (i · 𝑏)) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ)
2422, 23sylan 267 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ)
2524adantr 261 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) ∧ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) → ((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ)
26 addcl 7006 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℂ ∧ (i · 𝑏) ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2720, 26sylan2 270 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2827adantr 261 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
2922adantr 261 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈ ℂ)
30 simpr 103 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
3128, 29, 30mulassd 7050 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) · 𝑦) = ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)))
32 recextlem1 7632 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) = ((𝑎 · 𝑎) + (𝑏 · 𝑏)))
3332adantr 261 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) = ((𝑎 · 𝑎) + (𝑏 · 𝑏)))
3433oveq1d 5527 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) · 𝑦) = (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦))
3531, 34eqtr3d 2074 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦))
36 id 19 . . . . . . . . . . . . . . . . . 18 ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1)
3735, 36sylan9eq 2092 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) ∧ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) → ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1)
38 oveq2 5520 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑎 − (i · 𝑏)) · 𝑦) → ((𝑎 + (i · 𝑏)) · 𝑥) = ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)))
3938eqeq1d 2048 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑎 − (i · 𝑏)) · 𝑦) → (((𝑎 + (i · 𝑏)) · 𝑥) = 1 ↔ ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1))
4039rspcev 2656 . . . . . . . . . . . . . . . . 17 ((((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ ∧ ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)
4125, 37, 40syl2anc 391 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) ∧ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)
4241exp31 346 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑦 ∈ ℂ → ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)))
4317, 42syl5 28 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑦 ∈ ℝ → ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)))
4443rexlimdv 2432 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4515, 16, 44syl2an 273 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4645adantr 261 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0) → (∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4714, 46mpd 13 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)
4847ex 108 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
4912, 48sylbid 139 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
503, 49syld 40 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 + (i · 𝑏)) # 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
5150adantr 261 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → ((𝑎 + (i · 𝑏)) # 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
52 breq1 3767 . . . . . . 7 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 # 0 ↔ (𝑎 + (i · 𝑏)) # 0))
5352adantl 262 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (𝐴 # 0 ↔ (𝑎 + (i · 𝑏)) # 0))
54 oveq1 5519 . . . . . . . . 9 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 · 𝑥) = ((𝑎 + (i · 𝑏)) · 𝑥))
5554eqeq1d 2048 . . . . . . . 8 (𝐴 = (𝑎 + (i · 𝑏)) → ((𝐴 · 𝑥) = 1 ↔ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
5655rexbidv 2327 . . . . . . 7 (𝐴 = (𝑎 + (i · 𝑏)) → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
5756adantl 262 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))
5851, 53, 573imtr4d 192 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (𝐴 # 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
5958ex 108 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 # 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)))
6059rexlimivv 2438 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 # 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
611, 60syl 14 . 2 (𝐴 ∈ ℂ → (𝐴 # 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
6261imp 115 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  wrex 2307   class class class wbr 3764  (class class class)co 5512  cc 6887  cr 6888  0cc0 6889  1c1 6890  ici 6891   + caddc 6892   · cmul 6894  cmin 7182   # creap 7565   # cap 7572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573
This theorem is referenced by:  mulap0  7635  mulcanapd  7642  receuap  7650
  Copyright terms: Public domain W3C validator