Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-addcl | GIF version |
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by theorem axaddcl 6940. Proofs should normally use addcl 7006 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 6887 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 1393 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 1393 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 97 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | caddc 6892 | . . . 4 class + | |
8 | 1, 4, 7 | co 5512 | . . 3 class (𝐴 + 𝐵) |
9 | 8, 2 | wcel 1393 | . 2 wff (𝐴 + 𝐵) ∈ ℂ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
This axiom is referenced by: addcl 7006 |
Copyright terms: Public domain | W3C validator |