![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ixi | GIF version |
Description: i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
ixi | ⊢ (i · i) = -1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 7185 | . 2 ⊢ -1 = (0 − 1) | |
2 | ax-i2m1 6989 | . . 3 ⊢ ((i · i) + 1) = 0 | |
3 | 0cn 7019 | . . . 4 ⊢ 0 ∈ ℂ | |
4 | ax-1cn 6977 | . . . 4 ⊢ 1 ∈ ℂ | |
5 | ax-icn 6979 | . . . . 5 ⊢ i ∈ ℂ | |
6 | 5, 5 | mulcli 7032 | . . . 4 ⊢ (i · i) ∈ ℂ |
7 | 3, 4, 6 | subadd2i 7299 | . . 3 ⊢ ((0 − 1) = (i · i) ↔ ((i · i) + 1) = 0) |
8 | 2, 7 | mpbir 134 | . 2 ⊢ (0 − 1) = (i · i) |
9 | 1, 8 | eqtr2i 2061 | 1 ⊢ (i · i) = -1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 (class class class)co 5512 0cc0 6889 1c1 6890 ici 6891 + caddc 6892 · cmul 6894 − cmin 7182 -cneg 7183 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-setind 4262 ax-resscn 6976 ax-1cn 6977 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-addcom 6984 ax-addass 6986 ax-distr 6988 ax-i2m1 6989 ax-0id 6992 ax-rnegex 6993 ax-cnre 6995 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 df-riota 5468 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-sub 7184 df-neg 7185 |
This theorem is referenced by: inelr 7575 mulreim 7595 recextlem1 7632 cju 7913 irec 9352 i2 9353 crre 9457 remim 9460 remullem 9471 absi 9657 |
Copyright terms: Public domain | W3C validator |