Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  2mulicn GIF version

Theorem 2mulicn 8147
 Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 7986 . 2 2 ∈ ℂ
2 ax-icn 6979 . 2 i ∈ ℂ
31, 2mulcli 7032 1 (2 · i) ∈ ℂ
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1393  (class class class)co 5512  ℂcc 6887  ici 6891   · cmul 6894  2c2 7964 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-resscn 6976  ax-1re 6978  ax-icn 6979  ax-addrcl 6981  ax-mulcl 6982 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931  df-2 7973 This theorem is referenced by:  2muline0  8150  imval2  9494
 Copyright terms: Public domain W3C validator