![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2mulicn | GIF version |
Description: (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2mulicn | ⊢ (2 · i) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 7986 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 6979 | . 2 ⊢ i ∈ ℂ | |
3 | 1, 2 | mulcli 7032 | 1 ⊢ (2 · i) ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 (class class class)co 5512 ℂcc 6887 ici 6891 · cmul 6894 2c2 7964 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-resscn 6976 ax-1re 6978 ax-icn 6979 ax-addrcl 6981 ax-mulcl 6982 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-in 2924 df-ss 2931 df-2 7973 |
This theorem is referenced by: 2muline0 8150 imval2 9494 |
Copyright terms: Public domain | W3C validator |