ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulrcl GIF version

Axiom ax-mulrcl 6964
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by theorem axmulrcl 6924. Proofs should normally use remulcl 6990 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)

Detailed syntax breakdown of Axiom ax-mulrcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cr 6869 . . . 4 class
31, 2wcel 1393 . . 3 wff 𝐴 ∈ ℝ
4 cB . . . 4 class 𝐵
54, 2wcel 1393 . . 3 wff 𝐵 ∈ ℝ
63, 5wa 97 . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)
7 cmul 6875 . . . 4 class ·
81, 4, 7co 5499 . . 3 class (𝐴 · 𝐵)
98, 2wcel 1393 . 2 wff (𝐴 · 𝐵) ∈ ℝ
106, 9wi 4 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
Colors of variables: wff set class
This axiom is referenced by:  remulcl  6990
  Copyright terms: Public domain W3C validator