![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-sub | GIF version |
Description: Define subtraction. Theorem subval 7203 shows its value (and describes how this definition works), theorem subaddi 7298 relates it to addition, and theorems subcli 7287 and resubcli 7274 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
Ref | Expression |
---|---|
df-sub | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmin 7182 | . 2 class − | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cc 6887 | . . 3 class ℂ | |
5 | 3 | cv 1242 | . . . . . 6 class 𝑦 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1242 | . . . . . 6 class 𝑧 |
8 | caddc 6892 | . . . . . 6 class + | |
9 | 5, 7, 8 | co 5512 | . . . . 5 class (𝑦 + 𝑧) |
10 | 2 | cv 1242 | . . . . 5 class 𝑥 |
11 | 9, 10 | wceq 1243 | . . . 4 wff (𝑦 + 𝑧) = 𝑥 |
12 | 11, 6, 4 | crio 5467 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥) |
13 | 2, 3, 4, 4, 12 | cmpt2 5514 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
14 | 1, 13 | wceq 1243 | 1 wff − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
Colors of variables: wff set class |
This definition is referenced by: subval 7203 subf 7213 |
Copyright terms: Public domain | W3C validator |