ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0 GIF version

Theorem elnn0 7959
Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
elnn0 (A 0 ↔ (A A = 0))

Proof of Theorem elnn0
StepHypRef Expression
1 df-n0 7958 . . 3 0 = (ℕ ∪ {0})
21eleq2i 2101 . 2 (A 0A (ℕ ∪ {0}))
3 elun 3078 . 2 (A (ℕ ∪ {0}) ↔ (A A {0}))
4 c0ex 6819 . . . 4 0 V
54elsnc2 3397 . . 3 (A {0} ↔ A = 0)
65orbi2i 678 . 2 ((A A {0}) ↔ (A A = 0))
72, 3, 63bitri 195 1 (A 0 ↔ (A A = 0))
Colors of variables: wff set class
Syntax hints:  wb 98   wo 628   = wceq 1242   wcel 1390  cun 2909  {csn 3367  0cc0 6711  cn 7695  0cn0 7957
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-1cn 6776  ax-icn 6778  ax-addcl 6779  ax-mulcl 6781  ax-i2m1 6788
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-sn 3373  df-n0 7958
This theorem is referenced by:  0nn0  7972  nn0ge0  7983  nnnn0addcl  7988  nnm1nn0  7999  elnnnn0b  8002  elnn0z  8034  elznn0nn  8035  elznn0  8036  elznn  8037  nn0ind-raph  8131  expp1  8916  expnegap0  8917  expcllem  8920
  Copyright terms: Public domain W3C validator