ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0p1e1 GIF version

Theorem 0p1e1 7809
Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
0p1e1 (0 + 1) = 1

Proof of Theorem 0p1e1
StepHypRef Expression
1 ax-1cn 6776 . 2 1
21addid2i 6953 1 (0 + 1) = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1242  (class class class)co 5455  0cc0 6711  1c1 6712   + caddc 6714
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-ext 2019  ax-1cn 6776  ax-icn 6778  ax-addcl 6779  ax-mulcl 6781  ax-addcom 6783  ax-i2m1 6788  ax-0id 6791
This theorem depends on definitions:  df-bi 110  df-cleq 2030  df-clel 2033
This theorem is referenced by:  zgt0ge1  8078  nn0lt10b  8097  gtndiv  8111  nn0ind-raph  8131  1e0p1  8171  fz01en  8687  fz0tp  8751  elfzonlteqm1  8836  fzo0to2pr  8844  fzo0to3tp  8845  expp1  8916
  Copyright terms: Public domain W3C validator