Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  0p1e1 GIF version

Theorem 0p1e1 8031
 Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
0p1e1 (0 + 1) = 1

Proof of Theorem 0p1e1
StepHypRef Expression
1 ax-1cn 6977 . 2 1 ∈ ℂ
21addid2i 7156 1 (0 + 1) = 1
 Colors of variables: wff set class Syntax hints:   = wceq 1243  (class class class)co 5512  0cc0 6889  1c1 6890   + caddc 6892 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-mulcl 6982  ax-addcom 6984  ax-i2m1 6989  ax-0id 6992 This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-clel 2036 This theorem is referenced by:  zgt0ge1  8302  nn0lt10b  8321  gtndiv  8335  nn0ind-raph  8355  1e0p1  8395  fz01en  8917  fz0tp  8981  elfzonlteqm1  9066  fzo0to2pr  9074  fzo0to3tp  9075  fldiv4p1lem1div2  9147  expp1  9262
 Copyright terms: Public domain W3C validator