ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com3l Structured version   GIF version

Theorem com3l 75
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com3.1 (φ → (ψ → (χθ)))
Assertion
Ref Expression
com3l (ψ → (χ → (φθ)))

Proof of Theorem com3l
StepHypRef Expression
1 com3.1 . . 3 (φ → (ψ → (χθ)))
21com3r 73 . 2 (χ → (φ → (ψθ)))
32com3r 73 1 (ψ → (χ → (φθ)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  com4l  78  impd  242  expdcom  1310  nebidc  2263  prel12  3516  reusv3  4142  relcoi1  4776  oprabid  5461  poxp  5775  reldmtpos  5790  tfrlem9  5857  tfri3  5875  distrlem5prl  6425  distrlem5pru  6426  bj-inf2vnlem2  7189
  Copyright terms: Public domain W3C validator