ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com3l Structured version   GIF version

Theorem com3l 75
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com3.1 (φ → (ψ → (χθ)))
Assertion
Ref Expression
com3l (ψ → (χ → (φθ)))

Proof of Theorem com3l
StepHypRef Expression
1 com3.1 . . 3 (φ → (ψ → (χθ)))
21com3r 73 . 2 (χ → (φ → (ψθ)))
32com3r 73 1 (ψ → (χ → (φθ)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  com4l  78  impd  242  expdcom  1328  nebidc  2279  prel12  3533  reusv3  4158  relcoi1  4792  oprabid  5480  poxp  5794  reldmtpos  5809  tfrlem9  5876  tfri3  5894  distrlem5prl  6560  distrlem5pru  6561  bndndx  7916  uzind2  8086  leexp1a  8923  bj-inf2vnlem2  9355
  Copyright terms: Public domain W3C validator