![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq12d | GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (φ → A = B) |
breq12d.2 | ⊢ (φ → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breq12d | ⊢ (φ → (A𝑅𝐶 ↔ B𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (φ → A = B) | |
2 | breq12d.2 | . 2 ⊢ (φ → 𝐶 = 𝐷) | |
3 | breq12 3760 | . 2 ⊢ ((A = B ∧ 𝐶 = 𝐷) → (A𝑅𝐶 ↔ B𝑅𝐷)) | |
4 | 1, 2, 3 | syl2anc 391 | 1 ⊢ (φ → (A𝑅𝐶 ↔ B𝑅𝐷)) |
Copyright terms: Public domain | W3C validator |