ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemopl GIF version

Theorem caucvgprprlemopl 6795
Description: Lemma for caucvgprpr 6810. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemopl ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙,𝑡,𝑟   𝑢,𝐹,𝑡   𝑡,𝐿   𝑝,𝑙,𝑞,𝑟,𝑠,𝑡   𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑡
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑠,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑛,𝑠,𝑞,𝑝)   𝐿(𝑢,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemopl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
21caucvgprprlemell 6783 . . . 4 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
32simprbi 260 . . 3 (𝑠 ∈ (1st𝐿) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
43adantl 262 . 2 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑏N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
5 caucvgprpr.f . . . . . . 7 (𝜑𝐹:NP)
65ad2antrr 457 . . . . . 6 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → 𝐹:NP)
7 simprl 483 . . . . . 6 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → 𝑏N)
86, 7ffvelrnd 5303 . . . . 5 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (𝐹𝑏) ∈ P)
9 prop 6573 . . . . 5 ((𝐹𝑏) ∈ P → ⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P)
108, 9syl 14 . . . 4 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P)
11 simprr 484 . . . . 5 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
121caucvgprprlemell 6783 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
1312simplbi 259 . . . . . . . 8 (𝑠 ∈ (1st𝐿) → 𝑠Q)
1413ad2antlr 458 . . . . . . 7 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → 𝑠Q)
15 nnnq 6520 . . . . . . . . 9 (𝑏N → [⟨𝑏, 1𝑜⟩] ~QQ)
16 recclnq 6490 . . . . . . . . 9 ([⟨𝑏, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
1715, 16syl 14 . . . . . . . 8 (𝑏N → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
1817ad2antrl 459 . . . . . . 7 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
19 addclnq 6473 . . . . . . 7 ((𝑠Q ∧ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ Q)
2014, 18, 19syl2anc 391 . . . . . 6 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ Q)
21 nqprl 6649 . . . . . 6 (((𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ Q ∧ (𝐹𝑏) ∈ P) → ((𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
2220, 8, 21syl2anc 391 . . . . 5 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ((𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
2311, 22mpbird 156 . . . 4 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)))
24 prnmaxl 6586 . . . 4 ((⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐹𝑏))) → ∃𝑎 ∈ (1st ‘(𝐹𝑏))(𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)
2510, 23, 24syl2anc 391 . . 3 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ∃𝑎 ∈ (1st ‘(𝐹𝑏))(𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)
2618adantr 261 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
2714adantr 261 . . . . . . . 8 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → 𝑠Q)
28 ltaddnq 6505 . . . . . . . 8 (((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q𝑠Q) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑠))
2926, 27, 28syl2anc 391 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑠))
30 addcomnqg 6479 . . . . . . . 8 (((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q𝑠Q) → ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑠) = (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
3126, 27, 30syl2anc 391 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑠) = (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
3229, 31breqtrd 3788 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
33 simprr 484 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)
34 ltsonq 6496 . . . . . . 7 <Q Or Q
35 ltrelnq 6463 . . . . . . 7 <Q ⊆ (Q × Q)
3634, 35sotri 4720 . . . . . 6 (((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑎)
3732, 33, 36syl2anc 391 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑎)
3810adantr 261 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → ⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P)
39 simprl 483 . . . . . . 7 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → 𝑎 ∈ (1st ‘(𝐹𝑏)))
40 elprnql 6579 . . . . . . 7 ((⟨(1st ‘(𝐹𝑏)), (2nd ‘(𝐹𝑏))⟩ ∈ P𝑎 ∈ (1st ‘(𝐹𝑏))) → 𝑎Q)
4138, 39, 40syl2anc 391 . . . . . 6 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → 𝑎Q)
42 ltexnqq 6506 . . . . . 6 (((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q𝑎Q) → ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑎 ↔ ∃𝑡Q ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎))
4326, 41, 42syl2anc 391 . . . . 5 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑎 ↔ ∃𝑡Q ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎))
4437, 43mpbid 135 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → ∃𝑡Q ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎)
4527ad2antrr 457 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑠Q)
4626ad2antrr 457 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
47 addcomnqg 6479 . . . . . . . . . . 11 ((𝑠Q ∧ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) = ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑠))
4845, 46, 47syl2anc 391 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) = ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑠))
4933ad2antrr 457 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)
5048, 49eqbrtrrd 3786 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑠) <Q 𝑎)
51 simpr 103 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎)
5250, 51breqtrrd 3790 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡))
53 simplr 482 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑡Q)
54 ltanqg 6498 . . . . . . . . 9 ((𝑠Q𝑡Q ∧ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q) → (𝑠 <Q 𝑡 ↔ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡)))
5545, 53, 46, 54syl3anc 1135 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 <Q 𝑡 ↔ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑠) <Q ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡)))
5652, 55mpbird 156 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑠 <Q 𝑡)
577ad3antrrr 461 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑏N)
58 addcomnqg 6479 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q𝑡Q) → ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
5946, 53, 58syl2anc 391 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
6059, 51eqtr3d 2074 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) = 𝑎)
6139ad2antrr 457 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑎 ∈ (1st ‘(𝐹𝑏)))
6260, 61eqeltrd 2114 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)))
63 addclnq 6473 . . . . . . . . . . . 12 ((𝑡Q ∧ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q) → (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ Q)
6453, 46, 63syl2anc 391 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ Q)
658ad3antrrr 461 . . . . . . . . . . 11 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝐹𝑏) ∈ P)
66 nqprl 6649 . . . . . . . . . . 11 (((𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ Q ∧ (𝐹𝑏) ∈ P) → ((𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
6764, 65, 66syl2anc 391 . . . . . . . . . 10 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → ((𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐹𝑏)) ↔ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
6862, 67mpbid 135 . . . . . . . . 9 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
69 opeq1 3549 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑏 → ⟨𝑟, 1𝑜⟩ = ⟨𝑏, 1𝑜⟩)
7069eceq1d 6142 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑏 → [⟨𝑟, 1𝑜⟩] ~Q = [⟨𝑏, 1𝑜⟩] ~Q )
7170fveq2d 5182 . . . . . . . . . . . . . . 15 (𝑟 = 𝑏 → (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))
7271oveq2d 5528 . . . . . . . . . . . . . 14 (𝑟 = 𝑏 → (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) = (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
7372breq2d 3776 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → (𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ↔ 𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))))
7473abbidv 2155 . . . . . . . . . . . 12 (𝑟 = 𝑏 → {𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))} = {𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))})
7572breq1d 3774 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → ((𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞 ↔ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞))
7675abbidv 2155 . . . . . . . . . . . 12 (𝑟 = 𝑏 → {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞})
7774, 76opeq12d 3557 . . . . . . . . . . 11 (𝑟 = 𝑏 → ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
78 fveq2 5178 . . . . . . . . . . 11 (𝑟 = 𝑏 → (𝐹𝑟) = (𝐹𝑏))
7977, 78breq12d 3777 . . . . . . . . . 10 (𝑟 = 𝑏 → (⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
8079rspcev 2656 . . . . . . . . 9 ((𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
8157, 68, 80syl2anc 391 . . . . . . . 8 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
821caucvgprprlemell 6783 . . . . . . . 8 (𝑡 ∈ (1st𝐿) ↔ (𝑡Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑡 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
8353, 81, 82sylanbrc 394 . . . . . . 7 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → 𝑡 ∈ (1st𝐿))
8456, 83jca 290 . . . . . 6 ((((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) ∧ ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎) → (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
8584ex 108 . . . . 5 (((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) ∧ 𝑡Q) → (((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎 → (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))))
8685reximdva 2421 . . . 4 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → (∃𝑡Q ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) +Q 𝑡) = 𝑎 → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))))
8744, 86mpd 13 . . 3 ((((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) ∧ (𝑎 ∈ (1st ‘(𝐹𝑏)) ∧ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑎)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
8825, 87rexlimddv 2437 . 2 (((𝜑𝑠 ∈ (1st𝐿)) ∧ (𝑏N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
894, 88rexlimddv 2437 1 ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  {cab 2026  wral 2306  wrex 2307  {crab 2310  cop 3378   class class class wbr 3764  wf 4898  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  1𝑜c1o 5994  [cec 6104  Ncnpi 6370   <N clti 6373   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380  *Qcrq 6382   <Q cltq 6383  Pcnp 6389   +P cpp 6391  <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-iltp 6568
This theorem is referenced by:  caucvgprprlemrnd  6799
  Copyright terms: Public domain W3C validator