ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemell GIF version

Theorem caucvgprprlemell 6783
Description: Lemma for caucvgprpr 6810. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
Hypothesis
Ref Expression
caucvgprprlemell.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemell (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
Distinct variable groups:   𝐹,𝑏   𝐹,𝑙,𝑟   𝑢,𝐹,𝑟   𝑋,𝑏,𝑝   𝑋,𝑙,𝑟,𝑝   𝑢,𝑋,𝑝   𝑋,𝑞,𝑏   𝑞,𝑙,𝑟   𝑢,𝑞
Allowed substitution hints:   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑟,𝑞,𝑝,𝑏,𝑙)

Proof of Theorem caucvgprprlemell
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5519 . . . . . . . 8 (𝑙 = 𝑋 → (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )))
21breq2d 3776 . . . . . . 7 (𝑙 = 𝑋 → (𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))))
32abbidv 2155 . . . . . 6 (𝑙 = 𝑋 → {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))})
41breq1d 3774 . . . . . . 7 (𝑙 = 𝑋 → ((𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞))
54abbidv 2155 . . . . . 6 (𝑙 = 𝑋 → {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞})
63, 5opeq12d 3557 . . . . 5 (𝑙 = 𝑋 → ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
76breq1d 3774 . . . 4 (𝑙 = 𝑋 → (⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
87rexbidv 2327 . . 3 (𝑙 = 𝑋 → (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
9 caucvgprprlemell.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
109fveq2i 5181 . . . 4 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
11 nqex 6461 . . . . . 6 Q ∈ V
1211rabex 3901 . . . . 5 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
1311rabex 3901 . . . . 5 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
1412, 13op1st 5773 . . . 4 (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
1510, 14eqtri 2060 . . 3 (1st𝐿) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
168, 15elrab2 2700 . 2 (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
17 opeq1 3549 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ⟨𝑟, 1𝑜⟩ = ⟨𝑎, 1𝑜⟩)
1817eceq1d 6142 . . . . . . . . . . 11 (𝑟 = 𝑎 → [⟨𝑟, 1𝑜⟩] ~Q = [⟨𝑎, 1𝑜⟩] ~Q )
1918fveq2d 5182 . . . . . . . . . 10 (𝑟 = 𝑎 → (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))
2019oveq2d 5528 . . . . . . . . 9 (𝑟 = 𝑎 → (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )))
2120breq2d 3776 . . . . . . . 8 (𝑟 = 𝑎 → (𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))))
2221abbidv 2155 . . . . . . 7 (𝑟 = 𝑎 → {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))})
2320breq1d 3774 . . . . . . . 8 (𝑟 = 𝑎 → ((𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞))
2423abbidv 2155 . . . . . . 7 (𝑟 = 𝑎 → {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞})
2522, 24opeq12d 3557 . . . . . 6 (𝑟 = 𝑎 → ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
26 fveq2 5178 . . . . . 6 (𝑟 = 𝑎 → (𝐹𝑟) = (𝐹𝑎))
2725, 26breq12d 3777 . . . . 5 (𝑟 = 𝑎 → (⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎)))
2827cbvrexv 2534 . . . 4 (∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑎N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎))
29 opeq1 3549 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ⟨𝑎, 1𝑜⟩ = ⟨𝑏, 1𝑜⟩)
3029eceq1d 6142 . . . . . . . . . . 11 (𝑎 = 𝑏 → [⟨𝑎, 1𝑜⟩] ~Q = [⟨𝑏, 1𝑜⟩] ~Q )
3130fveq2d 5182 . . . . . . . . . 10 (𝑎 = 𝑏 → (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))
3231oveq2d 5528 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
3332breq2d 3776 . . . . . . . 8 (𝑎 = 𝑏 → (𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))))
3433abbidv 2155 . . . . . . 7 (𝑎 = 𝑏 → {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))})
3532breq1d 3774 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞))
3635abbidv 2155 . . . . . . 7 (𝑎 = 𝑏 → {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞})
3734, 36opeq12d 3557 . . . . . 6 (𝑎 = 𝑏 → ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
38 fveq2 5178 . . . . . 6 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
3937, 38breq12d 3777 . . . . 5 (𝑎 = 𝑏 → (⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
4039cbvrexv 2534 . . . 4 (∃𝑎N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ↔ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
4128, 40bitri 173 . . 3 (∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
4241anbi2i 430 . 2 ((𝑋Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
4316, 42bitri 173 1 (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98   = wceq 1243  wcel 1393  {cab 2026  wrex 2307  {crab 2310  cop 3378   class class class wbr 3764  cfv 4902  (class class class)co 5512  1st c1st 5765  1𝑜c1o 5994  [cec 6104  Ncnpi 6370   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380  *Qcrq 6382   <Q cltq 6383   +P cpp 6391  <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-1st 5767  df-ec 6108  df-qs 6112  df-ni 6402  df-nqqs 6446
This theorem is referenced by:  caucvgprprlemopl  6795  caucvgprprlemlol  6796  caucvgprprlemdisj  6800  caucvgprprlemloc  6801
  Copyright terms: Public domain W3C validator