ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemloc Structured version   GIF version

Theorem caucvgprlemloc 6646
Description: Lemma for caucvgpr 6653. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (φ𝐹:NQ)
caucvgpr.cau (φ𝑛 N 𝑘 N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (φ𝑗 N A <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩
Assertion
Ref Expression
caucvgprlemloc (φ𝑠 Q 𝑟 Q (𝑠 <Q 𝑟 → (𝑠 (1st𝐿) 𝑟 (2nd𝐿))))
Distinct variable groups:   A,𝑗   𝑗,𝐹,𝑙   u,𝐹   φ,𝑗,𝑟,𝑠   𝑠,𝑙   u,𝑗,𝑟
Allowed substitution hints:   φ(u,𝑘,𝑛,𝑙)   A(u,𝑘,𝑛,𝑠,𝑟,𝑙)   𝐹(𝑘,𝑛,𝑠,𝑟)   𝐿(u,𝑗,𝑘,𝑛,𝑠,𝑟,𝑙)

Proof of Theorem caucvgprlemloc
Dummy variables f g 𝑚 x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 6392 . . . . 5 (𝑠 <Q 𝑟y Q (𝑠 +Q y) = 𝑟)
21adantl 262 . . . 4 (((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) → y Q (𝑠 +Q y) = 𝑟)
3 subhalfnqq 6397 . . . . . 6 (y Qx Q (x +Q x) <Q y)
43ad2antrl 459 . . . . 5 ((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) → x Q (x +Q x) <Q y)
5 archrecnq 6635 . . . . . . 7 (x Q𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)
65ad2antrl 459 . . . . . 6 (((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) → 𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)
7 simprr 484 . . . . . . . . . . . 12 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)
8 nnnq 6405 . . . . . . . . . . . . . . 15 (𝑚 N → [⟨𝑚, 1𝑜⟩] ~Q Q)
9 recclnq 6376 . . . . . . . . . . . . . . 15 ([⟨𝑚, 1𝑜⟩] ~Q Q → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q)
108, 9syl 14 . . . . . . . . . . . . . 14 (𝑚 N → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q)
1110ad2antrl 459 . . . . . . . . . . . . 13 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q)
12 simplrl 487 . . . . . . . . . . . . 13 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → x Q)
13 lt2addnq 6388 . . . . . . . . . . . . 13 ((((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q x Q) ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q x Q)) → (((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (x +Q x)))
1411, 12, 11, 12, 13syl22anc 1135 . . . . . . . . . . . 12 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (x +Q x)))
157, 7, 14mp2and 409 . . . . . . . . . . 11 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (x +Q x))
16 simplrr 488 . . . . . . . . . . 11 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (x +Q x) <Q y)
17 ltsonq 6382 . . . . . . . . . . . 12 <Q Or Q
18 ltrelnq 6349 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
1917, 18sotri 4663 . . . . . . . . . . 11 ((((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (x +Q x) (x +Q x) <Q y) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q y)
2015, 16, 19syl2anc 391 . . . . . . . . . 10 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q y)
21 simplrl 487 . . . . . . . . . . 11 (((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) → 𝑠 Q)
2221ad3antrrr 461 . . . . . . . . . 10 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → 𝑠 Q)
23 ltanqi 6386 . . . . . . . . . 10 ((((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q y 𝑠 Q) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q (𝑠 +Q y))
2420, 22, 23syl2anc 391 . . . . . . . . 9 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q (𝑠 +Q y))
25 simprr 484 . . . . . . . . . 10 ((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) → (𝑠 +Q y) = 𝑟)
2625ad2antrr 457 . . . . . . . . 9 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (𝑠 +Q y) = 𝑟)
2724, 26breqtrd 3779 . . . . . . . 8 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q 𝑟)
28 addclnq 6359 . . . . . . . . . . 11 (((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) Q)
2911, 11, 28syl2anc 391 . . . . . . . . . 10 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) Q)
30 addclnq 6359 . . . . . . . . . 10 ((𝑠 Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) Q) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) Q)
3122, 29, 30syl2anc 391 . . . . . . . . 9 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) Q)
32 simplrr 488 . . . . . . . . . 10 (((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) → 𝑟 Q)
3332ad3antrrr 461 . . . . . . . . 9 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → 𝑟 Q)
34 caucvgpr.f . . . . . . . . . . . 12 (φ𝐹:NQ)
3534ad5antr 465 . . . . . . . . . . 11 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → 𝐹:NQ)
36 simprl 483 . . . . . . . . . . 11 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → 𝑚 N)
3735, 36ffvelrnd 5246 . . . . . . . . . 10 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (𝐹𝑚) Q)
38 addclnq 6359 . . . . . . . . . 10 (((𝐹𝑚) Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) Q)
3937, 11, 38syl2anc 391 . . . . . . . . 9 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) Q)
40 sowlin 4048 . . . . . . . . . 10 (( <Q Or Q ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) Q 𝑟 Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) Q)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟)))
4117, 40mpan 400 . . . . . . . . 9 (((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) Q 𝑟 Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) Q) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟)))
4231, 33, 39, 41syl3anc 1134 . . . . . . . 8 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q 𝑟 → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟)))
4327, 42mpd 13 . . . . . . 7 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟))
4422adantr 261 . . . . . . . . . 10 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → 𝑠 Q)
45 simplrl 487 . . . . . . . . . . 11 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → 𝑚 N)
46 simpr 103 . . . . . . . . . . . . 13 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )))
4711adantr 261 . . . . . . . . . . . . . . 15 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q)
48 addassnqg 6366 . . . . . . . . . . . . . . 15 ((𝑠 Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q) → ((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) = (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))))
4944, 47, 47, 48syl3anc 1134 . . . . . . . . . . . . . 14 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) = (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))))
5049breq1d 3765 . . . . . . . . . . . . 13 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ↔ (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))))
5146, 50mpbird 156 . . . . . . . . . . . 12 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )))
52 ltanqg 6384 . . . . . . . . . . . . . 14 ((f Q g Q Q) → (f <Q g ↔ ( +Q f) <Q ( +Q g)))
5352adantl 262 . . . . . . . . . . . . 13 ((((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) (f Q g Q Q)) → (f <Q g ↔ ( +Q f) <Q ( +Q g)))
54 addclnq 6359 . . . . . . . . . . . . . 14 ((𝑠 Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) Q) → (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) Q)
5544, 47, 54syl2anc 391 . . . . . . . . . . . . 13 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) Q)
5637adantr 261 . . . . . . . . . . . . 13 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (𝐹𝑚) Q)
57 addcomnqg 6365 . . . . . . . . . . . . . 14 ((f Q g Q) → (f +Q g) = (g +Q f))
5857adantl 262 . . . . . . . . . . . . 13 ((((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) (f Q g Q)) → (f +Q g) = (g +Q f))
5953, 55, 56, 47, 58caovord2d 5612 . . . . . . . . . . . 12 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → ((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝐹𝑚) ↔ ((𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))))
6051, 59mpbird 156 . . . . . . . . . . 11 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝐹𝑚))
61 opeq1 3540 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ⟨𝑗, 1𝑜⟩ = ⟨𝑚, 1𝑜⟩)
6261eceq1d 6078 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨𝑚, 1𝑜⟩] ~Q )
6362fveq2d 5125 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))
6463oveq2d 5471 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )))
65 fveq2 5121 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
6664, 65breq12d 3768 . . . . . . . . . . . 12 (𝑗 = 𝑚 → ((𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝐹𝑚)))
6766rspcev 2650 . . . . . . . . . . 11 ((𝑚 N (𝑠 +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q (𝐹𝑚)) → 𝑗 N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
6845, 60, 67syl2anc 391 . . . . . . . . . 10 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → 𝑗 N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
69 oveq1 5462 . . . . . . . . . . . . 13 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
7069breq1d 3765 . . . . . . . . . . . 12 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
7170rexbidv 2321 . . . . . . . . . . 11 (𝑙 = 𝑠 → (𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ 𝑗 N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
72 caucvgpr.lim . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩
7372fveq2i 5124 . . . . . . . . . . . 12 (1st𝐿) = (1st ‘⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩)
74 nqex 6347 . . . . . . . . . . . . . 14 Q V
7574rabex 3892 . . . . . . . . . . . . 13 {𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} V
7674rabex 3892 . . . . . . . . . . . . 13 {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u} V
7775, 76op1st 5715 . . . . . . . . . . . 12 (1st ‘⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩) = {𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
7873, 77eqtri 2057 . . . . . . . . . . 11 (1st𝐿) = {𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
7971, 78elrab2 2694 . . . . . . . . . 10 (𝑠 (1st𝐿) ↔ (𝑠 Q 𝑗 N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
8044, 68, 79sylanbrc 394 . . . . . . . . 9 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) (𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) → 𝑠 (1st𝐿))
8180ex 108 . . . . . . . 8 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → ((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) → 𝑠 (1st𝐿)))
8233adantr 261 . . . . . . . . . 10 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟) → 𝑟 Q)
8365, 63oveq12d 5473 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )))
8483breq1d 3765 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟 ↔ ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟))
8584rspcev 2650 . . . . . . . . . . 11 ((𝑚 N ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟) → 𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟)
8636, 85sylan 267 . . . . . . . . . 10 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟) → 𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟)
87 breq2 3759 . . . . . . . . . . . 12 (u = 𝑟 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟))
8887rexbidv 2321 . . . . . . . . . . 11 (u = 𝑟 → (𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟))
8972fveq2i 5124 . . . . . . . . . . . 12 (2nd𝐿) = (2nd ‘⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩)
9075, 76op2nd 5716 . . . . . . . . . . . 12 (2nd ‘⟨{𝑙 Q𝑗 N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}⟩) = {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}
9189, 90eqtri 2057 . . . . . . . . . . 11 (2nd𝐿) = {u Q𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q u}
9288, 91elrab2 2694 . . . . . . . . . 10 (𝑟 (2nd𝐿) ↔ (𝑟 Q 𝑗 N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑟))
9382, 86, 92sylanbrc 394 . . . . . . . . 9 (((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟) → 𝑟 (2nd𝐿))
9493ex 108 . . . . . . . 8 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟𝑟 (2nd𝐿)))
9581, 94orim12d 699 . . . . . . 7 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (((𝑠 +Q ((*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) ((𝐹𝑚) +Q (*Q‘[⟨𝑚, 1𝑜⟩] ~Q )) <Q 𝑟) → (𝑠 (1st𝐿) 𝑟 (2nd𝐿))))
9643, 95mpd 13 . . . . . 6 ((((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) (𝑚 N (*Q‘[⟨𝑚, 1𝑜⟩] ~Q ) <Q x)) → (𝑠 (1st𝐿) 𝑟 (2nd𝐿)))
976, 96rexlimddv 2431 . . . . 5 (((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) (x Q (x +Q x) <Q y)) → (𝑠 (1st𝐿) 𝑟 (2nd𝐿)))
984, 97rexlimddv 2431 . . . 4 ((((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) (y Q (𝑠 +Q y) = 𝑟)) → (𝑠 (1st𝐿) 𝑟 (2nd𝐿)))
992, 98rexlimddv 2431 . . 3 (((φ (𝑠 Q 𝑟 Q)) 𝑠 <Q 𝑟) → (𝑠 (1st𝐿) 𝑟 (2nd𝐿)))
10099ex 108 . 2 ((φ (𝑠 Q 𝑟 Q)) → (𝑠 <Q 𝑟 → (𝑠 (1st𝐿) 𝑟 (2nd𝐿))))
101100ralrimivva 2395 1 (φ𝑠 Q 𝑟 Q (𝑠 <Q 𝑟 → (𝑠 (1st𝐿) 𝑟 (2nd𝐿))))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   wo 628   w3a 884   = wceq 1242   wcel 1390  wral 2300  wrex 2301  {crab 2304  cop 3370   class class class wbr 3755   Or wor 4023  wf 4841  cfv 4845  (class class class)co 5455  1st c1st 5707  2nd c2nd 5708  1𝑜c1o 5933  [cec 6040  Ncnpi 6256   <N clti 6259   ~Q ceq 6263  Qcnq 6264   +Q cplq 6266  *Qcrq 6268   <Q cltq 6269
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-coll 3863  ax-sep 3866  ax-nul 3874  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220  ax-iinf 4254
This theorem depends on definitions:  df-bi 110  df-dc 742  df-3or 885  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-int 3607  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-tr 3846  df-eprel 4017  df-id 4021  df-po 4024  df-iso 4025  df-iord 4069  df-on 4071  df-suc 4074  df-iom 4257  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852  df-fv 4853  df-ov 5458  df-oprab 5459  df-mpt2 5460  df-1st 5709  df-2nd 5710  df-recs 5861  df-irdg 5897  df-1o 5940  df-oadd 5944  df-omul 5945  df-er 6042  df-ec 6044  df-qs 6048  df-ni 6288  df-pli 6289  df-mi 6290  df-lti 6291  df-plpq 6328  df-mpq 6329  df-enq 6331  df-nqqs 6332  df-plqqs 6333  df-mqqs 6334  df-1nqqs 6335  df-rq 6336  df-ltnqqs 6337
This theorem is referenced by:  caucvgprlemcl  6647
  Copyright terms: Public domain W3C validator