Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrfval Structured version   GIF version

Theorem ofrfval 5639
 Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (φ𝐹 Fn A)
offval.2 (φ𝐺 Fn B)
offval.3 (φA 𝑉)
offval.4 (φB 𝑊)
offval.5 (AB) = 𝑆
offval.6 ((φ x A) → (𝐹x) = 𝐶)
offval.7 ((φ x B) → (𝐺x) = 𝐷)
Assertion
Ref Expression
ofrfval (φ → (𝐹𝑟 𝑅𝐺x 𝑆 𝐶𝑅𝐷))
Distinct variable groups:   x,A   x,𝐹   x,𝐺   φ,x   x,𝑆   x,𝑅
Allowed substitution hints:   B(x)   𝐶(x)   𝐷(x)   𝑉(x)   𝑊(x)

Proof of Theorem ofrfval
Dummy variables f g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4 (φ𝐹 Fn A)
2 offval.3 . . . 4 (φA 𝑉)
3 fnex 5304 . . . 4 ((𝐹 Fn A A 𝑉) → 𝐹 V)
41, 2, 3syl2anc 393 . . 3 (φ𝐹 V)
5 offval.2 . . . 4 (φ𝐺 Fn B)
6 offval.4 . . . 4 (φB 𝑊)
7 fnex 5304 . . . 4 ((𝐺 Fn B B 𝑊) → 𝐺 V)
85, 6, 7syl2anc 393 . . 3 (φ𝐺 V)
9 dmeq 4458 . . . . . 6 (f = 𝐹 → dom f = dom 𝐹)
10 dmeq 4458 . . . . . 6 (g = 𝐺 → dom g = dom 𝐺)
119, 10ineqan12d 3113 . . . . 5 ((f = 𝐹 g = 𝐺) → (dom f ∩ dom g) = (dom 𝐹 ∩ dom 𝐺))
12 fveq1 5098 . . . . . 6 (f = 𝐹 → (fx) = (𝐹x))
13 fveq1 5098 . . . . . 6 (g = 𝐺 → (gx) = (𝐺x))
1412, 13breqan12d 3749 . . . . 5 ((f = 𝐹 g = 𝐺) → ((fx)𝑅(gx) ↔ (𝐹x)𝑅(𝐺x)))
1511, 14raleqbidv 2491 . . . 4 ((f = 𝐹 g = 𝐺) → (x (dom f ∩ dom g)(fx)𝑅(gx) ↔ x (dom 𝐹 ∩ dom 𝐺)(𝐹x)𝑅(𝐺x)))
16 df-ofr 5632 . . . 4 𝑟 𝑅 = {⟨f, g⟩ ∣ x (dom f ∩ dom g)(fx)𝑅(gx)}
1715, 16brabga 3971 . . 3 ((𝐹 V 𝐺 V) → (𝐹𝑟 𝑅𝐺x (dom 𝐹 ∩ dom 𝐺)(𝐹x)𝑅(𝐺x)))
184, 8, 17syl2anc 393 . 2 (φ → (𝐹𝑟 𝑅𝐺x (dom 𝐹 ∩ dom 𝐺)(𝐹x)𝑅(𝐺x)))
19 fndm 4920 . . . . . 6 (𝐹 Fn A → dom 𝐹 = A)
201, 19syl 14 . . . . 5 (φ → dom 𝐹 = A)
21 fndm 4920 . . . . . 6 (𝐺 Fn B → dom 𝐺 = B)
225, 21syl 14 . . . . 5 (φ → dom 𝐺 = B)
2320, 22ineq12d 3112 . . . 4 (φ → (dom 𝐹 ∩ dom 𝐺) = (AB))
24 offval.5 . . . 4 (AB) = 𝑆
2523, 24syl6eq 2066 . . 3 (φ → (dom 𝐹 ∩ dom 𝐺) = 𝑆)
2625raleqdv 2485 . 2 (φ → (x (dom 𝐹 ∩ dom 𝐺)(𝐹x)𝑅(𝐺x) ↔ x 𝑆 (𝐹x)𝑅(𝐺x)))
27 inss1 3130 . . . . . . 7 (AB) ⊆ A
2824, 27eqsstr3i 2949 . . . . . 6 𝑆A
2928sseli 2914 . . . . 5 (x 𝑆x A)
30 offval.6 . . . . 5 ((φ x A) → (𝐹x) = 𝐶)
3129, 30sylan2 270 . . . 4 ((φ x 𝑆) → (𝐹x) = 𝐶)
32 inss2 3131 . . . . . . 7 (AB) ⊆ B
3324, 32eqsstr3i 2949 . . . . . 6 𝑆B
3433sseli 2914 . . . . 5 (x 𝑆x B)
35 offval.7 . . . . 5 ((φ x B) → (𝐺x) = 𝐷)
3634, 35sylan2 270 . . . 4 ((φ x 𝑆) → (𝐺x) = 𝐷)
3731, 36breq12d 3747 . . 3 ((φ x 𝑆) → ((𝐹x)𝑅(𝐺x) ↔ 𝐶𝑅𝐷))
3837ralbidva 2296 . 2 (φ → (x 𝑆 (𝐹x)𝑅(𝐺x) ↔ x 𝑆 𝐶𝑅𝐷))
3918, 26, 383bitrd 203 1 (φ → (𝐹𝑟 𝑅𝐺x 𝑆 𝐶𝑅𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1226   ∈ wcel 1370  ∀wral 2280  Vcvv 2531   ∩ cin 2889   class class class wbr 3734  dom cdm 4268   Fn wfn 4820  ‘cfv 4825   ∘𝑟 cofr 5630 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-14 1382  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000  ax-coll 3842  ax-sep 3845  ax-pow 3897  ax-pr 3914 This theorem depends on definitions:  df-bi 110  df-3an 873  df-tru 1229  df-nf 1326  df-sb 1624  df-eu 1881  df-mo 1882  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-ral 2285  df-rex 2286  df-reu 2287  df-rab 2289  df-v 2533  df-sbc 2738  df-csb 2826  df-un 2895  df-in 2897  df-ss 2904  df-pw 3332  df-sn 3352  df-pr 3353  df-op 3355  df-uni 3551  df-iun 3629  df-br 3735  df-opab 3789  df-mpt 3790  df-id 4000  df-xp 4274  df-rel 4275  df-cnv 4276  df-co 4277  df-dm 4278  df-rn 4279  df-res 4280  df-ima 4281  df-iota 4790  df-fun 4827  df-fn 4828  df-f 4829  df-f1 4830  df-fo 4831  df-f1o 4832  df-fv 4833  df-ofr 5632 This theorem is referenced by:  ofrval  5641  ofrfval2  5646  caofref  5651  caofrss  5654  caoftrn  5655
 Copyright terms: Public domain W3C validator