ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemgt Structured version   GIF version

Theorem addlocprlemgt 6383
Description: Lemma for addlocpr 6385. The (𝐷 +Q 𝐸) <Q 𝑄 case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (φA P)
addlocprlem.b (φB P)
addlocprlem.qr (φ𝑄 <Q 𝑅)
addlocprlem.p (φ𝑃 Q)
addlocprlem.qppr (φ → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (φ𝐷 (1stA))
addlocprlem.uup (φ𝑈 (2ndA))
addlocprlem.du (φ𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (φ𝐸 (1stB))
addlocprlem.tup (φ𝑇 (2ndB))
addlocprlem.et (φ𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemgt (φ → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 (2nd ‘(A +P B))))

Proof of Theorem addlocprlemgt
StepHypRef Expression
1 addlocprlem.a . . . . . . 7 (φA P)
2 addlocprlem.b . . . . . . 7 (φB P)
3 addlocprlem.qr . . . . . . 7 (φ𝑄 <Q 𝑅)
4 addlocprlem.p . . . . . . 7 (φ𝑃 Q)
5 addlocprlem.qppr . . . . . . 7 (φ → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
6 addlocprlem.dlo . . . . . . 7 (φ𝐷 (1stA))
7 addlocprlem.uup . . . . . . 7 (φ𝑈 (2ndA))
8 addlocprlem.du . . . . . . 7 (φ𝑈 <Q (𝐷 +Q 𝑃))
9 addlocprlem.elo . . . . . . 7 (φ𝐸 (1stB))
10 addlocprlem.tup . . . . . . 7 (φ𝑇 (2ndB))
11 addlocprlem.et . . . . . . 7 (φ𝑇 <Q (𝐸 +Q 𝑃))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 6381 . . . . . 6 (φ → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
1312adantr 261 . . . . 5 ((φ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
14 prop 6323 . . . . . . . . . . . 12 (A P → ⟨(1stA), (2ndA)⟩ P)
151, 14syl 14 . . . . . . . . . . 11 (φ → ⟨(1stA), (2ndA)⟩ P)
16 elprnql 6329 . . . . . . . . . . 11 ((⟨(1stA), (2ndA)⟩ P 𝐷 (1stA)) → 𝐷 Q)
1715, 6, 16syl2anc 393 . . . . . . . . . 10 (φ𝐷 Q)
18 prop 6323 . . . . . . . . . . . 12 (B P → ⟨(1stB), (2ndB)⟩ P)
192, 18syl 14 . . . . . . . . . . 11 (φ → ⟨(1stB), (2ndB)⟩ P)
20 elprnql 6329 . . . . . . . . . . 11 ((⟨(1stB), (2ndB)⟩ P 𝐸 (1stB)) → 𝐸 Q)
2119, 9, 20syl2anc 393 . . . . . . . . . 10 (φ𝐸 Q)
22 addclnq 6228 . . . . . . . . . 10 ((𝐷 Q 𝐸 Q) → (𝐷 +Q 𝐸) Q)
2317, 21, 22syl2anc 393 . . . . . . . . 9 (φ → (𝐷 +Q 𝐸) Q)
24 ltrelnq 6218 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
2524brel 4315 . . . . . . . . . . 11 (𝑄 <Q 𝑅 → (𝑄 Q 𝑅 Q))
263, 25syl 14 . . . . . . . . . 10 (φ → (𝑄 Q 𝑅 Q))
2726simpld 105 . . . . . . . . 9 (φ𝑄 Q)
28 addclnq 6228 . . . . . . . . . 10 ((𝑃 Q 𝑃 Q) → (𝑃 +Q 𝑃) Q)
294, 4, 28syl2anc 393 . . . . . . . . 9 (φ → (𝑃 +Q 𝑃) Q)
30 ltanqg 6253 . . . . . . . . 9 (((𝐷 +Q 𝐸) Q 𝑄 Q (𝑃 +Q 𝑃) Q) → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄)))
3123, 27, 29, 30syl3anc 1119 . . . . . . . 8 (φ → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄)))
32 addcomnqg 6234 . . . . . . . . . 10 (((𝑃 +Q 𝑃) Q (𝐷 +Q 𝐸) Q) → ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
3329, 23, 32syl2anc 393 . . . . . . . . 9 (φ → ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
34 addcomnqg 6234 . . . . . . . . . 10 (((𝑃 +Q 𝑃) Q 𝑄 Q) → ((𝑃 +Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q 𝑃)))
3529, 27, 34syl2anc 393 . . . . . . . . 9 (φ → ((𝑃 +Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q 𝑃)))
3633, 35breq12d 3747 . . . . . . . 8 (φ → (((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃))))
3731, 36bitrd 177 . . . . . . 7 (φ → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃))))
3837biimpa 280 . . . . . 6 ((φ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)))
395breq2d 3746 . . . . . . 7 (φ → (((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
4039adantr 261 . . . . . 6 ((φ (𝐷 +Q 𝐸) <Q 𝑄) → (((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
4138, 40mpbid 135 . . . . 5 ((φ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅)
4213, 41jca 290 . . . 4 ((φ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
43 ltsonq 6251 . . . . 5 <Q Or Q
4443, 24sotri 4643 . . . 4 (((𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅) → (𝑈 +Q 𝑇) <Q 𝑅)
4542, 44syl 14 . . 3 ((φ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑈 +Q 𝑇) <Q 𝑅)
461, 7jca 290 . . . . 5 (φ → (A P 𝑈 (2ndA)))
472, 10jca 290 . . . . 5 (φ → (B P 𝑇 (2ndB)))
4826simprd 107 . . . . 5 (φ𝑅 Q)
49 addnqpru 6379 . . . . 5 ((((A P 𝑈 (2ndA)) (B P 𝑇 (2ndB))) 𝑅 Q) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 (2nd ‘(A +P B))))
5046, 47, 48, 49syl21anc 1118 . . . 4 (φ → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 (2nd ‘(A +P B))))
5150adantr 261 . . 3 ((φ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 (2nd ‘(A +P B))))
5245, 51mpd 13 . 2 ((φ (𝐷 +Q 𝐸) <Q 𝑄) → 𝑅 (2nd ‘(A +P B)))
5352ex 108 1 (φ → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 (2nd ‘(A +P B))))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1226   wcel 1370  cop 3349   class class class wbr 3734  cfv 4825  (class class class)co 5432  1st c1st 5684  2nd c2nd 5685  Qcnq 6134   +Q cplq 6136   <Q cltq 6139  Pcnp 6145   +P cpp 6147
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-13 1381  ax-14 1382  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000  ax-coll 3842  ax-sep 3845  ax-nul 3853  ax-pow 3897  ax-pr 3914  ax-un 4116  ax-setind 4200  ax-iinf 4234
This theorem depends on definitions:  df-bi 110  df-dc 731  df-3or 872  df-3an 873  df-tru 1229  df-fal 1232  df-nf 1326  df-sb 1624  df-eu 1881  df-mo 1882  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-ne 2184  df-ral 2285  df-rex 2286  df-reu 2287  df-rab 2289  df-v 2533  df-sbc 2738  df-csb 2826  df-dif 2893  df-un 2895  df-in 2897  df-ss 2904  df-nul 3198  df-pw 3332  df-sn 3352  df-pr 3353  df-op 3355  df-uni 3551  df-int 3586  df-iun 3629  df-br 3735  df-opab 3789  df-mpt 3790  df-tr 3825  df-eprel 3996  df-id 4000  df-po 4003  df-iso 4004  df-iord 4048  df-on 4050  df-suc 4053  df-iom 4237  df-xp 4274  df-rel 4275  df-cnv 4276  df-co 4277  df-dm 4278  df-rn 4279  df-res 4280  df-ima 4281  df-iota 4790  df-fun 4827  df-fn 4828  df-f 4829  df-f1 4830  df-fo 4831  df-f1o 4832  df-fv 4833  df-ov 5435  df-oprab 5436  df-mpt2 5437  df-1st 5686  df-2nd 5687  df-recs 5838  df-irdg 5874  df-1o 5912  df-oadd 5916  df-omul 5917  df-er 6013  df-ec 6015  df-qs 6019  df-ni 6158  df-pli 6159  df-mi 6160  df-lti 6161  df-plpq 6197  df-mpq 6198  df-enq 6200  df-nqqs 6201  df-plqqs 6202  df-mqqs 6203  df-1nqqs 6204  df-rq 6205  df-ltnqqs 6206  df-inp 6314  df-iplp 6316
This theorem is referenced by:  addlocprlem  6384
  Copyright terms: Public domain W3C validator