Proof of Theorem addlocprlemgt
Step | Hyp | Ref
| Expression |
1 | | addlocprlem.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ P) |
2 | | addlocprlem.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ P) |
3 | | addlocprlem.qr |
. . . . . . 7
⊢ (𝜑 → 𝑄 <Q 𝑅) |
4 | | addlocprlem.p |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ Q) |
5 | | addlocprlem.qppr |
. . . . . . 7
⊢ (𝜑 → (𝑄 +Q (𝑃 +Q
𝑃)) = 𝑅) |
6 | | addlocprlem.dlo |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
7 | | addlocprlem.uup |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
8 | | addlocprlem.du |
. . . . . . 7
⊢ (𝜑 → 𝑈 <Q (𝐷 +Q
𝑃)) |
9 | | addlocprlem.elo |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
10 | | addlocprlem.tup |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
11 | | addlocprlem.et |
. . . . . . 7
⊢ (𝜑 → 𝑇 <Q (𝐸 +Q
𝑃)) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | addlocprlemeqgt 6630 |
. . . . . 6
⊢ (𝜑 → (𝑈 +Q 𝑇) <Q
((𝐷
+Q 𝐸) +Q (𝑃 +Q
𝑃))) |
13 | 12 | adantr 261 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 +Q 𝐸) <Q
𝑄) → (𝑈 +Q
𝑇)
<Q ((𝐷 +Q 𝐸) +Q
(𝑃
+Q 𝑃))) |
14 | | prop 6573 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
15 | 1, 14 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 〈(1st
‘𝐴), (2nd
‘𝐴)〉 ∈
P) |
16 | | elprnql 6579 |
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐷 ∈ (1st
‘𝐴)) → 𝐷 ∈
Q) |
17 | 15, 6, 16 | syl2anc 391 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ Q) |
18 | | prop 6573 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
19 | 2, 18 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 〈(1st
‘𝐵), (2nd
‘𝐵)〉 ∈
P) |
20 | | elprnql 6579 |
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 ∈ (1st
‘𝐵)) → 𝐸 ∈
Q) |
21 | 19, 9, 20 | syl2anc 391 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ Q) |
22 | | addclnq 6473 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ Q ∧
𝐸 ∈ Q)
→ (𝐷
+Q 𝐸) ∈ Q) |
23 | 17, 21, 22 | syl2anc 391 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 +Q 𝐸) ∈
Q) |
24 | | ltrelnq 6463 |
. . . . . . . . . . . 12
⊢
<Q ⊆ (Q ×
Q) |
25 | 24 | brel 4392 |
. . . . . . . . . . 11
⊢ (𝑄 <Q
𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈
Q)) |
26 | 3, 25 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 ∈ Q ∧ 𝑅 ∈
Q)) |
27 | 26 | simpld 105 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ Q) |
28 | | addclnq 6473 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ Q ∧
𝑃 ∈ Q)
→ (𝑃
+Q 𝑃) ∈ Q) |
29 | 4, 4, 28 | syl2anc 391 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 +Q 𝑃) ∈
Q) |
30 | | ltanqg 6498 |
. . . . . . . . 9
⊢ (((𝐷 +Q
𝐸) ∈ Q
∧ 𝑄 ∈
Q ∧ (𝑃
+Q 𝑃) ∈ Q) → ((𝐷 +Q
𝐸)
<Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q
(𝐷
+Q 𝐸)) <Q ((𝑃 +Q
𝑃)
+Q 𝑄))) |
31 | 23, 27, 29, 30 | syl3anc 1135 |
. . . . . . . 8
⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q
𝑄 ↔ ((𝑃 +Q
𝑃)
+Q (𝐷 +Q 𝐸))
<Q ((𝑃 +Q 𝑃) +Q
𝑄))) |
32 | | addcomnqg 6479 |
. . . . . . . . . 10
⊢ (((𝑃 +Q
𝑃) ∈ Q
∧ (𝐷
+Q 𝐸) ∈ Q) → ((𝑃 +Q
𝑃)
+Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q
(𝑃
+Q 𝑃))) |
33 | 29, 23, 32 | syl2anc 391 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 +Q 𝑃) +Q
(𝐷
+Q 𝐸)) = ((𝐷 +Q 𝐸) +Q
(𝑃
+Q 𝑃))) |
34 | | addcomnqg 6479 |
. . . . . . . . . 10
⊢ (((𝑃 +Q
𝑃) ∈ Q
∧ 𝑄 ∈
Q) → ((𝑃
+Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q
𝑃))) |
35 | 29, 27, 34 | syl2anc 391 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 +Q 𝑃) +Q
𝑄) = (𝑄 +Q (𝑃 +Q
𝑃))) |
36 | 33, 35 | breq12d 3777 |
. . . . . . . 8
⊢ (𝜑 → (((𝑃 +Q 𝑃) +Q
(𝐷
+Q 𝐸)) <Q ((𝑃 +Q
𝑃)
+Q 𝑄) ↔ ((𝐷 +Q 𝐸) +Q
(𝑃
+Q 𝑃)) <Q (𝑄 +Q
(𝑃
+Q 𝑃)))) |
37 | 31, 36 | bitrd 177 |
. . . . . . 7
⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q
𝑄 ↔ ((𝐷 +Q
𝐸)
+Q (𝑃 +Q 𝑃))
<Q (𝑄 +Q (𝑃 +Q
𝑃)))) |
38 | 37 | biimpa 280 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷 +Q 𝐸) <Q
𝑄) → ((𝐷 +Q
𝐸)
+Q (𝑃 +Q 𝑃))
<Q (𝑄 +Q (𝑃 +Q
𝑃))) |
39 | 5 | breq2d 3776 |
. . . . . . 7
⊢ (𝜑 → (((𝐷 +Q 𝐸) +Q
(𝑃
+Q 𝑃)) <Q (𝑄 +Q
(𝑃
+Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q
(𝑃
+Q 𝑃)) <Q 𝑅)) |
40 | 39 | adantr 261 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐷 +Q 𝐸) <Q
𝑄) → (((𝐷 +Q
𝐸)
+Q (𝑃 +Q 𝑃))
<Q (𝑄 +Q (𝑃 +Q
𝑃)) ↔ ((𝐷 +Q
𝐸)
+Q (𝑃 +Q 𝑃))
<Q 𝑅)) |
41 | 38, 40 | mpbid 135 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 +Q 𝐸) <Q
𝑄) → ((𝐷 +Q
𝐸)
+Q (𝑃 +Q 𝑃))
<Q 𝑅) |
42 | 13, 41 | jca 290 |
. . . 4
⊢ ((𝜑 ∧ (𝐷 +Q 𝐸) <Q
𝑄) → ((𝑈 +Q
𝑇)
<Q ((𝐷 +Q 𝐸) +Q
(𝑃
+Q 𝑃)) ∧ ((𝐷 +Q 𝐸) +Q
(𝑃
+Q 𝑃)) <Q 𝑅)) |
43 | | ltsonq 6496 |
. . . . 5
⊢
<Q Or Q |
44 | 43, 24 | sotri 4720 |
. . . 4
⊢ (((𝑈 +Q
𝑇)
<Q ((𝐷 +Q 𝐸) +Q
(𝑃
+Q 𝑃)) ∧ ((𝐷 +Q 𝐸) +Q
(𝑃
+Q 𝑃)) <Q 𝑅) → (𝑈 +Q 𝑇) <Q
𝑅) |
45 | 42, 44 | syl 14 |
. . 3
⊢ ((𝜑 ∧ (𝐷 +Q 𝐸) <Q
𝑄) → (𝑈 +Q
𝑇)
<Q 𝑅) |
46 | 1, 7 | jca 290 |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ P ∧ 𝑈 ∈ (2nd
‘𝐴))) |
47 | 2, 10 | jca 290 |
. . . . 5
⊢ (𝜑 → (𝐵 ∈ P ∧ 𝑇 ∈ (2nd
‘𝐵))) |
48 | 26 | simprd 107 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Q) |
49 | | addnqpru 6628 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝑈 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝑇 ∈ (2nd
‘𝐵))) ∧ 𝑅 ∈ Q) →
((𝑈
+Q 𝑇) <Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P
𝐵)))) |
50 | 46, 47, 48, 49 | syl21anc 1134 |
. . . 4
⊢ (𝜑 → ((𝑈 +Q 𝑇) <Q
𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P
𝐵)))) |
51 | 50 | adantr 261 |
. . 3
⊢ ((𝜑 ∧ (𝐷 +Q 𝐸) <Q
𝑄) → ((𝑈 +Q
𝑇)
<Q 𝑅 → 𝑅 ∈ (2nd ‘(𝐴 +P
𝐵)))) |
52 | 45, 51 | mpd 13 |
. 2
⊢ ((𝜑 ∧ (𝐷 +Q 𝐸) <Q
𝑄) → 𝑅 ∈ (2nd ‘(𝐴 +P
𝐵))) |
53 | 52 | ex 108 |
1
⊢ (𝜑 → ((𝐷 +Q 𝐸) <Q
𝑄 → 𝑅 ∈ (2nd ‘(𝐴 +P
𝐵)))) |