ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemgt GIF version

Theorem addlocprlemgt 6632
Description: Lemma for addlocpr 6634. The (𝐷 +Q 𝐸) <Q 𝑄 case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemgt (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))

Proof of Theorem addlocprlemgt
StepHypRef Expression
1 addlocprlem.a . . . . . . 7 (𝜑𝐴P)
2 addlocprlem.b . . . . . . 7 (𝜑𝐵P)
3 addlocprlem.qr . . . . . . 7 (𝜑𝑄 <Q 𝑅)
4 addlocprlem.p . . . . . . 7 (𝜑𝑃Q)
5 addlocprlem.qppr . . . . . . 7 (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
6 addlocprlem.dlo . . . . . . 7 (𝜑𝐷 ∈ (1st𝐴))
7 addlocprlem.uup . . . . . . 7 (𝜑𝑈 ∈ (2nd𝐴))
8 addlocprlem.du . . . . . . 7 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
9 addlocprlem.elo . . . . . . 7 (𝜑𝐸 ∈ (1st𝐵))
10 addlocprlem.tup . . . . . . 7 (𝜑𝑇 ∈ (2nd𝐵))
11 addlocprlem.et . . . . . . 7 (𝜑𝑇 <Q (𝐸 +Q 𝑃))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 6630 . . . . . 6 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
1312adantr 261 . . . . 5 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
14 prop 6573 . . . . . . . . . . . 12 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
151, 14syl 14 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
16 elprnql 6579 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐷 ∈ (1st𝐴)) → 𝐷Q)
1715, 6, 16syl2anc 391 . . . . . . . . . 10 (𝜑𝐷Q)
18 prop 6573 . . . . . . . . . . . 12 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
192, 18syl 14 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
20 elprnql 6579 . . . . . . . . . . 11 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 ∈ (1st𝐵)) → 𝐸Q)
2119, 9, 20syl2anc 391 . . . . . . . . . 10 (𝜑𝐸Q)
22 addclnq 6473 . . . . . . . . . 10 ((𝐷Q𝐸Q) → (𝐷 +Q 𝐸) ∈ Q)
2317, 21, 22syl2anc 391 . . . . . . . . 9 (𝜑 → (𝐷 +Q 𝐸) ∈ Q)
24 ltrelnq 6463 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
2524brel 4392 . . . . . . . . . . 11 (𝑄 <Q 𝑅 → (𝑄Q𝑅Q))
263, 25syl 14 . . . . . . . . . 10 (𝜑 → (𝑄Q𝑅Q))
2726simpld 105 . . . . . . . . 9 (𝜑𝑄Q)
28 addclnq 6473 . . . . . . . . . 10 ((𝑃Q𝑃Q) → (𝑃 +Q 𝑃) ∈ Q)
294, 4, 28syl2anc 391 . . . . . . . . 9 (𝜑 → (𝑃 +Q 𝑃) ∈ Q)
30 ltanqg 6498 . . . . . . . . 9 (((𝐷 +Q 𝐸) ∈ Q𝑄Q ∧ (𝑃 +Q 𝑃) ∈ Q) → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄)))
3123, 27, 29, 30syl3anc 1135 . . . . . . . 8 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄)))
32 addcomnqg 6479 . . . . . . . . . 10 (((𝑃 +Q 𝑃) ∈ Q ∧ (𝐷 +Q 𝐸) ∈ Q) → ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
3329, 23, 32syl2anc 391 . . . . . . . . 9 (𝜑 → ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
34 addcomnqg 6479 . . . . . . . . . 10 (((𝑃 +Q 𝑃) ∈ Q𝑄Q) → ((𝑃 +Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q 𝑃)))
3529, 27, 34syl2anc 391 . . . . . . . . 9 (𝜑 → ((𝑃 +Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q 𝑃)))
3633, 35breq12d 3777 . . . . . . . 8 (𝜑 → (((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃))))
3731, 36bitrd 177 . . . . . . 7 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃))))
3837biimpa 280 . . . . . 6 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)))
395breq2d 3776 . . . . . . 7 (𝜑 → (((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
4039adantr 261 . . . . . 6 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
4138, 40mpbid 135 . . . . 5 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅)
4213, 41jca 290 . . . 4 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) ∧ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
43 ltsonq 6496 . . . . 5 <Q Or Q
4443, 24sotri 4720 . . . 4 (((𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) ∧ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅) → (𝑈 +Q 𝑇) <Q 𝑅)
4542, 44syl 14 . . 3 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑈 +Q 𝑇) <Q 𝑅)
461, 7jca 290 . . . . 5 (𝜑 → (𝐴P𝑈 ∈ (2nd𝐴)))
472, 10jca 290 . . . . 5 (𝜑 → (𝐵P𝑇 ∈ (2nd𝐵)))
4826simprd 107 . . . . 5 (𝜑𝑅Q)
49 addnqpru 6628 . . . . 5 ((((𝐴P𝑈 ∈ (2nd𝐴)) ∧ (𝐵P𝑇 ∈ (2nd𝐵))) ∧ 𝑅Q) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5046, 47, 48, 49syl21anc 1134 . . . 4 (𝜑 → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5150adantr 261 . . 3 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5245, 51mpd 13 . 2 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))
5352ex 108 1 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  cop 3378   class class class wbr 3764  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378   +Q cplq 6380   <Q cltq 6383  Pcnp 6389   +P cpp 6391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-iplp 6566
This theorem is referenced by:  addlocprlem  6633
  Copyright terms: Public domain W3C validator