ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem1 GIF version

Theorem caucvgprlem1 6777
Description: Lemma for caucvgpr 6780. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemlim.q (𝜑𝑄Q)
caucvgprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprlemlim.jkq (𝜑 → (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑄)
Assertion
Ref Expression
caucvgprlem1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙,𝑢   𝑗,𝐾,𝑙,𝑢   𝑄,𝑗,𝑙,𝑢   𝑄,𝑘   𝑗,𝐿,𝑘   𝑢,𝑗   𝑘,𝐹,𝑛   𝑗,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑄(𝑛)   𝐽(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐾(𝑘,𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlem1
StepHypRef Expression
1 caucvgprlemlim.jk . . . . . 6 (𝜑𝐽 <N 𝐾)
2 ltrelpi 6422 . . . . . . 7 <N ⊆ (N × N)
32brel 4392 . . . . . 6 (𝐽 <N 𝐾 → (𝐽N𝐾N))
41, 3syl 14 . . . . 5 (𝜑 → (𝐽N𝐾N))
54simprd 107 . . . 4 (𝜑𝐾N)
6 caucvgprlemlim.jkq . . . . . 6 (𝜑 → (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑄)
71, 6caucvgprlemk 6763 . . . . 5 (𝜑 → (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑄)
8 caucvgpr.f . . . . . 6 (𝜑𝐹:NQ)
98, 5ffvelrnd 5303 . . . . 5 (𝜑 → (𝐹𝐾) ∈ Q)
10 ltanqi 6500 . . . . 5 (((*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑄 ∧ (𝐹𝐾) ∈ Q) → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
117, 9, 10syl2anc 391 . . . 4 (𝜑 → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
12 opeq1 3549 . . . . . . . . 9 (𝑗 = 𝐾 → ⟨𝑗, 1𝑜⟩ = ⟨𝐾, 1𝑜⟩)
1312eceq1d 6142 . . . . . . . 8 (𝑗 = 𝐾 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨𝐾, 1𝑜⟩] ~Q )
1413fveq2d 5182 . . . . . . 7 (𝑗 = 𝐾 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))
1514oveq2d 5528 . . . . . 6 (𝑗 = 𝐾 → ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )))
16 fveq2 5178 . . . . . . 7 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
1716oveq1d 5527 . . . . . 6 (𝑗 = 𝐾 → ((𝐹𝑗) +Q 𝑄) = ((𝐹𝐾) +Q 𝑄))
1815, 17breq12d 3777 . . . . 5 (𝑗 = 𝐾 → (((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄)))
1918rspcev 2656 . . . 4 ((𝐾N ∧ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄)) → ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄))
205, 11, 19syl2anc 391 . . 3 (𝜑 → ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄))
21 oveq1 5519 . . . . . . . 8 (𝑙 = (𝐹𝐾) → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
2221breq1d 3774 . . . . . . 7 (𝑙 = (𝐹𝐾) → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
2322rexbidv 2327 . . . . . 6 (𝑙 = (𝐹𝐾) → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
2423elrab3 2699 . . . . 5 ((𝐹𝐾) ∈ Q → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
259, 24syl 14 . . . 4 (𝜑 → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
26 caucvgpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
27 caucvgpr.bnd . . . . . 6 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
28 caucvgpr.lim . . . . . 6 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
29 caucvgprlemlim.q . . . . . 6 (𝜑𝑄Q)
308, 26, 27, 28, 29caucvgprlemladdrl 6776 . . . . 5 (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
3130sseld 2944 . . . 4 (𝜑 → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3225, 31sylbird 159 . . 3 (𝜑 → (∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3320, 32mpd 13 . 2 (𝜑 → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
348, 26, 27, 28caucvgprlemcl 6774 . . . 4 (𝜑𝐿P)
35 nqprlu 6645 . . . . 5 (𝑄Q → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
3629, 35syl 14 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
37 addclpr 6635 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P)
3834, 36, 37syl2anc 391 . . 3 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P)
39 nqprl 6649 . . 3 (((𝐹𝐾) ∈ Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P) → ((𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
409, 38, 39syl2anc 391 . 2 (𝜑 → ((𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
4133, 40mpbid 135 1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  {cab 2026  wral 2306  wrex 2307  {crab 2310  cop 3378   class class class wbr 3764  wf 4898  cfv 4902  (class class class)co 5512  1st c1st 5765  1𝑜c1o 5994  [cec 6104  Ncnpi 6370   <N clti 6373   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380  *Qcrq 6382   <Q cltq 6383  Pcnp 6389   +P cpp 6391  <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iplp 6566  df-iltp 6568
This theorem is referenced by:  caucvgprlemlim  6779
  Copyright terms: Public domain W3C validator