![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltnnnq | GIF version |
Description: Ordering of positive integers via <N or <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.) |
Ref | Expression |
---|---|
ltnnnq | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ [〈𝐴, 1𝑜〉] ~Q <Q [〈𝐵, 1𝑜〉] ~Q )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 102 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐴 ∈ N) | |
2 | 1pi 6413 | . . . 4 ⊢ 1𝑜 ∈ N | |
3 | 2 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 1𝑜 ∈ N) |
4 | simpr 103 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐵 ∈ N) | |
5 | ordpipqqs 6472 | . . 3 ⊢ (((𝐴 ∈ N ∧ 1𝑜 ∈ N) ∧ (𝐵 ∈ N ∧ 1𝑜 ∈ N)) → ([〈𝐴, 1𝑜〉] ~Q <Q [〈𝐵, 1𝑜〉] ~Q ↔ (𝐴 ·N 1𝑜) <N (1𝑜 ·N 𝐵))) | |
6 | 1, 3, 4, 3, 5 | syl22anc 1136 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ([〈𝐴, 1𝑜〉] ~Q <Q [〈𝐵, 1𝑜〉] ~Q ↔ (𝐴 ·N 1𝑜) <N (1𝑜 ·N 𝐵))) |
7 | mulidpi 6416 | . . . 4 ⊢ (𝐴 ∈ N → (𝐴 ·N 1𝑜) = 𝐴) | |
8 | 1, 7 | syl 14 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 1𝑜) = 𝐴) |
9 | mulcompig 6429 | . . . . 5 ⊢ ((1𝑜 ∈ N ∧ 𝐵 ∈ N) → (1𝑜 ·N 𝐵) = (𝐵 ·N 1𝑜)) | |
10 | 2, 4, 9 | sylancr 393 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1𝑜 ·N 𝐵) = (𝐵 ·N 1𝑜)) |
11 | mulidpi 6416 | . . . . 5 ⊢ (𝐵 ∈ N → (𝐵 ·N 1𝑜) = 𝐵) | |
12 | 4, 11 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 ·N 1𝑜) = 𝐵) |
13 | 10, 12 | eqtrd 2072 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1𝑜 ·N 𝐵) = 𝐵) |
14 | 8, 13 | breq12d 3777 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 ·N 1𝑜) <N (1𝑜 ·N 𝐵) ↔ 𝐴 <N 𝐵)) |
15 | 6, 14 | bitr2d 178 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ [〈𝐴, 1𝑜〉] ~Q <Q [〈𝐵, 1𝑜〉] ~Q )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 ∈ wcel 1393 〈cop 3378 class class class wbr 3764 (class class class)co 5512 1𝑜c1o 5994 [cec 6104 Ncnpi 6370 ·N cmi 6372 <N clti 6373 ~Q ceq 6377 <Q cltq 6383 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-eprel 4026 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-recs 5920 df-irdg 5957 df-1o 6001 df-oadd 6005 df-omul 6006 df-er 6106 df-ec 6108 df-qs 6112 df-ni 6402 df-mi 6404 df-lti 6405 df-enq 6445 df-nqqs 6446 df-ltnqqs 6451 |
This theorem is referenced by: caucvgprlemk 6763 caucvgprprlemk 6781 ltrennb 6930 |
Copyright terms: Public domain | W3C validator |