Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2d GIF version

Theorem bitr2d 178
 Description: Deduction form of bitr2i 174. (Contributed by NM, 9-Jun-2004.)
Hypotheses
Ref Expression
bitr2d.1 (𝜑 → (𝜓𝜒))
bitr2d.2 (𝜑 → (𝜒𝜃))
Assertion
Ref Expression
bitr2d (𝜑 → (𝜃𝜓))

Proof of Theorem bitr2d
StepHypRef Expression
1 bitr2d.1 . . 3 (𝜑 → (𝜓𝜒))
2 bitr2d.2 . . 3 (𝜑 → (𝜒𝜃))
31, 2bitrd 177 . 2 (𝜑 → (𝜓𝜃))
43bicomd 129 1 (𝜑 → (𝜃𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  3bitrrd  204  3bitr2rd  206  pm5.18dc  777  drex1  1679  elrnmpt1  4585  xpopth  5802  sbcopeq1a  5813  ltnnnq  6521  ltaddsub  7431  leaddsub  7433  posdif  7450  lesub1  7451  ltsub1  7453  lesub0  7474  possumd  7560  ltdivmul  7842  ledivmul  7843  zlem1lt  8300  zltlem1  8301  fzrev2  8947  fz1sbc  8958  elfzp1b  8959  qtri3or  9098  sumsqeq0  9332  sqrtle  9634  sqrtlt  9635  absgt0ap  9695
 Copyright terms: Public domain W3C validator