ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemss1l GIF version

Theorem recexprlemss1l 6733
Description: The lower cut of 𝐴 ·P 𝐵 is a subset of the lower cut of one. Lemma for recexpr 6736. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemss1l (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlemss1l
Dummy variables 𝑞 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlempr 6730 . . . . 5 (𝐴P𝐵P)
3 df-imp 6567 . . . . . 6 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
4 mulclnq 6474 . . . . . 6 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelvl 6610 . . . . 5 ((𝐴P𝐵P) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞)))
62, 5mpdan 398 . . . 4 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞)))
71recexprlemell 6720 . . . . . . . 8 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
8 ltrelnq 6463 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
98brel 4392 . . . . . . . . . . . . 13 (𝑞 <Q 𝑦 → (𝑞Q𝑦Q))
109simprd 107 . . . . . . . . . . . 12 (𝑞 <Q 𝑦𝑦Q)
11 prop 6573 . . . . . . . . . . . . . . . . . 18 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 elprnql 6579 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
1311, 12sylan 267 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (1st𝐴)) → 𝑧Q)
14 ltmnqi 6501 . . . . . . . . . . . . . . . . . 18 ((𝑞 <Q 𝑦𝑧Q) → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦))
1514expcom 109 . . . . . . . . . . . . . . . . 17 (𝑧Q → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
1613, 15syl 14 . . . . . . . . . . . . . . . 16 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
1716adantr 261 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
18 prltlu 6585 . . . . . . . . . . . . . . . . . . 19 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑧 <Q (*Q𝑦))
1911, 18syl3an1 1168 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧 ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑧 <Q (*Q𝑦))
20193expia 1106 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (1st𝐴)) → ((*Q𝑦) ∈ (2nd𝐴) → 𝑧 <Q (*Q𝑦)))
2120adantr 261 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (2nd𝐴) → 𝑧 <Q (*Q𝑦)))
22 ltmnqi 6501 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 <Q (*Q𝑦) ∧ 𝑦Q) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)))
2322expcom 109 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑧 <Q (*Q𝑦) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
2423adantr 261 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → (𝑧 <Q (*Q𝑦) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
25 mulcomnqg 6481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
26 recidnq 6491 . . . . . . . . . . . . . . . . . . . . 21 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2726adantr 261 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q (*Q𝑦)) = 1Q)
2825, 27breq12d 3777 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2924, 28sylibd 138 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑧Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3029ancoms 255 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑦Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3113, 30sylan 267 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3221, 31syld 40 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑦) <Q 1Q))
3317, 32anim12d 318 . . . . . . . . . . . . . 14 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ((𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q)))
34 ltsonq 6496 . . . . . . . . . . . . . . 15 <Q Or Q
3534, 8sotri 4720 . . . . . . . . . . . . . 14 (((𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q) → (𝑧 ·Q 𝑞) <Q 1Q)
3633, 35syl6 29 . . . . . . . . . . . . 13 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
3736exp4b 349 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑦Q → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q))))
3810, 37syl5 28 . . . . . . . . . . 11 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q))))
3938pm2.43d 44 . . . . . . . . . 10 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q)))
4039impd 242 . . . . . . . . 9 ((𝐴P𝑧 ∈ (1st𝐴)) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
4140exlimdv 1700 . . . . . . . 8 ((𝐴P𝑧 ∈ (1st𝐴)) → (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
427, 41syl5bi 141 . . . . . . 7 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) → (𝑧 ·Q 𝑞) <Q 1Q))
43 breq1 3767 . . . . . . . 8 (𝑤 = (𝑧 ·Q 𝑞) → (𝑤 <Q 1Q ↔ (𝑧 ·Q 𝑞) <Q 1Q))
4443biimprcd 149 . . . . . . 7 ((𝑧 ·Q 𝑞) <Q 1Q → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q))
4542, 44syl6 29 . . . . . 6 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q)))
4645expimpd 345 . . . . 5 (𝐴P → ((𝑧 ∈ (1st𝐴) ∧ 𝑞 ∈ (1st𝐵)) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q)))
4746rexlimdvv 2439 . . . 4 (𝐴P → (∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q))
486, 47sylbid 139 . . 3 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) → 𝑤 <Q 1Q))
49 1prl 6653 . . . 4 (1st ‘1P) = {𝑤𝑤 <Q 1Q}
5049abeq2i 2148 . . 3 (𝑤 ∈ (1st ‘1P) ↔ 𝑤 <Q 1Q)
5148, 50syl6ibr 151 . 2 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) → 𝑤 ∈ (1st ‘1P)))
5251ssrdv 2951 1 (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  {cab 2026  wrex 2307  wss 2917  cop 3378   class class class wbr 3764  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378  1Qc1q 6379   ·Q cmq 6381  *Qcrq 6382   <Q cltq 6383  Pcnp 6389  1Pc1p 6390   ·P cmp 6392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-i1p 6565  df-imp 6567
This theorem is referenced by:  recexprlemex  6735
  Copyright terms: Public domain W3C validator